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Abstract. This work extends studies of Angluin, Lange and Zeugmann
on the dependence of learning on the hypotheses space chosen for the
class. In subsequent investigations, uniformly recursively enumerable hy-
potheses spaces have been considered. In the present work, the follow-
ing four types of learning are distinguished: class-comprising (where the
learner can choose a uniformly recursively enumerable superclass as hy-
potheses space), class-preserving (where the learner has to choose a uni-
formly recursively enumerable hypotheses space of the same class), pre-
scribed (where there must be a learner for every uniformly recursively
enumerable hypotheses space of the same class) and uniform (like pre-
scribed, but the learner has to be synthesized effectively from an in-
dex of the hypothesis space). While for explanatory learning, these four
types of learnability coincide, some or all are different for other learning
criteria. For example, for conservative learning, all four types are differ-
ent. Several results are obtained for vacillatory and behaviourally correct
learning; three of the four types can be separated, however the relation
between prescribed and uniform learning remains open. It is also shown
that every (not necessarily uniformly recursively enumerable) behaviour-
ally correct learnable class has a prudent learner, that is, a learner using
a hypotheses space such that it learns every set in the hypotheses space.
Moreover the prudent learner can be effectively built from any learner
for the class.

1 Introduction

The intuition behind learning in inductive inference [10] is that a learner sees
more and more data and while reading the data produces conjectures about the
concept to be learned which eventually stabilize on a correct description. The
learning task is not arbitrary, but stems from a given class of concepts. Angluin
[1] considered the important case that such a class is given by an indexed family,
that is, the class is uniformly recursive. She has given a characterization when
such a class is explanatorily learnable and introduced also important variants
such as conservative learning. In the present work, the more general case of
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uniformly r.e. classes is addressed. Previously learnability of uniformly r.e. classes
had been considered by de Jongh, Kanazawa [7] and Zilles [26,27].

Remark 1. First some basic notation. Let W0, W1, W2, . . . be an acceptable
enumeration of all r.e. subsets of the set of natural numbers N. A language is a
r.e. subset of natural numbers. Let ϕe denote the e-th partial recursive function,
again from an acceptable numbering. For more information on recursion theory,
the reader is referred to standard text books like the ones of Odifreddi [18]
and Soare [21]. The function 〈e, x〉 = 1

2 · (e + x)(e + x + 1) + x is Cantor’s
pairing function. A family L0, L1, L2, . . . is uniformly recursively enumerable iff
{〈e, x〉 : x ∈ Le} is a recursively enumerable set. For ease of notation, uniformly
r.e. classes are just called r.e. classes. Note that in this paper, notations like {L0,
L1, L2, . . .} are used as a short-hand for both, the family as well as for the class
of the sets; so set-theoretic comparisons like {L0, L1, L2, . . .} ⊆ {H0, H1, H2, . . .}
and {L0, L1, L2, . . .} = {H0, H1, H2, . . .} ignore the ordering of the sets inside
the class. Furthermore, let We,s, Le,s, He,s be the elements enumerated within
time s into We, Le, He, respectively. Without loss of generality, We,s, Le,s, He,s

are subsets of {0, 1, . . . , s}.
Let σ, τ range over (N ∪ {#})∗. Furthermore, let σ ⊆ τ denote that τ is an

extension of σ as a string. content(σ) denotes the set of natural numbers in the
range of σ. T is a text if T maps N to N ∪ {#} and T is a text for La iff the
numbers occurring in T are exactly those in La. content(T ) denotes the set of
natural numbers in the range of T . T [n] denotes the string consisting of the first
n elements of the text T , so T [0] is the empty string and T [2] = T (0)T (1).

Remark 2. A learner is a recursive function from (N∪{#})∗ to N∪{?}. In the
following, let M be a learner and let {L0, L1, L2, . . .}, {H0, H1, H2, . . .} be r.e.
classes. Here {L0, L1, L2, . . .} is the class M should learn and {H0, H1, H2, . . .}
is the hypotheses space used by M .

The learner M converges on T to b if there is an n with M(T [m]) = b for all
m ≥ n.

The learner M is finite [10] if for every text T there is one index e such that
for all n, either M(T [n]) =? or M(T [n]) = e.

The learner M is confident [19] if M converges on every text T to a hypothesis.
The learner M is conservative [1] if for all σ, τ with M(στ) �= M(σ) there is

an x occurring in στ such that x /∈ HM(σ).
The learner M semantically identifies La if, given any text T for L, HM(T [n])

= La for almost all n. The learner M syntactically identifies La if, given any
text T for L, there is a b with Hb = La and M(T [n]) = b for almost all n.

The learner M is a behaviourally correct learner for {L0, L1, L2, . . .} iff M
semantically identifies every La [3,6]; M is an explanatory learner for {L0, L1,
L2, . . .} if M syntactically identifies every La [4,10]. M is a vacillatory learner
for {L0, L1, L2, . . .} iff M is a behaviourally correct learner for {L0, L1, L2, . . .}
which on every text for a language La outputs only finitely many syntactically
different hypotheses [5].

The learner M is prudent [9,19] if it learns all languages in its hypotheses
space {H0, H1, H2, . . .}.
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In the first three sections, all classes considered are recursively enumerable, only
in Section 4 learnability of general classes is investigated.

Remark 3. Let M be a learner for {L0, L1, L2, . . .} using hypotheses space {H0,
H1, H2, . . .}. A sequence σ is called syntactic stabilizing sequence for M on a set
L iff σ ∈ (L ∪ {#})∗ and for all τ ∈ (L ∪ {#})∗, M(στ) = M(σ). A sequence
σ is called semantic stabilizing sequence for M on a set L iff σ ∈ (L ∪ {#})∗

and for all τ ∈ (L ∪ {#})∗, HM(στ) = HM(σ). Stabilizing sequences are called
locking sequences for M on L, if in addition to the above conditions it holds that
HM(σ) = L. Note that, if M learns L then stabilizing sequences for M on L are
also locking sequences for M on L.

Let K denote the halting problem. There is a partial K-recursive function
Γ which assigns to each e the length-lexicographically least syntactic stabilizing
sequence for M on Le; Γ (e) is defined iff such a sequence exists. Γ has a two-place
approximation γ(e, t) which converges to Γ (e) if Γ (e) is defined and diverges
otherwise. Note that Γ and γ can be obtained effectively from an index for M
and an index e′ with We′ = {〈e, x〉 : x ∈ Le}. Blum and Blum [4] introduced
the notion of locking sequences and Fulk [9] introduced the notion of stabilizing
sequences.

Angluin [1], Lange, Kapur and Zeugmann [15,16,23,24,25] studied the depen-
dence between the family {L0, L1, L2, . . .} to be learned and the hypotheses
space {H0, H1, H2, . . .} used by the learner. To formalize this, they introduced
the notions of exact, class-preserving and class-comprising learning. In addition
to this, new notions like uniform and prescribed are introduced. Here I ranges
over properties of the learner as defined in Remark 2, so I stands for “finite”,
“explanatory”, “conservatively explanatory”, “confidently explanatory”, “vacil-
latory” and “behaviourally correct”.

Definition 4. {L0, L1, L2, . . .} is class-comprisingly I learnable iff it is I learn-
able with respect to some hypotheses space {H0, H1, H2, . . .}; note that learn-
ability automatically implies {L0, L1, L2, . . .} ⊆ {H0, H1, H2, . . .}.

{L0, L1, L2, . . .} is class-preservingly I learnable iff it is I learnable with re-
spect to some hypotheses space {H0, H1, H2, . . .} satisfying {H0, H1, H2, . . .} =
{L0, L1, L2, . . .}.

{L0, L1, L2, . . .} is prescribed I learnable iff it is I learnable with respect to
every hypotheses space {H0, H1, H2, . . .} such that {L0, L1, L2, . . .} = {H0, H1,
H2, . . .}.

{L0, L1, L2, . . .} is uniformly I learnable iff there is a recursive enumeration of
partial-recursive functions M0, M1, M2, . . . such that the following holds: When-
ever {H0, H1, H2, . . .} = {L0, L1, L2, . . .} and We = {〈d, x〉 : x ∈ Hd} then Me is
total and an I learner for {L0, L1, L2, . . .} with respect to this hypotheses space
{H0, H1, H2, . . .}.

Remark 5. Lange and Zeugmann [15,23] considered besides class-preserving
and class-comprising also the following notion: {L0, L1, L2, . . .} is exactly I
learnable iff it is I learnable with {L0, L1, L2, . . .} itself taken as hypotheses
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space. Note that this notion needs that the ordering of the languages in {L0,
L1, L2, . . .} is taken into account, while all other definitions hold without pay-
ing attention to the specific ordering of the sets inside {L0, L1, L2, . . .}. The
relation to prescribed learning is that a class {L0, L1, L2, . . .} is prescribed I
learnable iff every family {H0, H1, H2, . . .} with {H0, H1, H2, . . .} = {L0, L1,
L2, . . .} is exactly I learnable.

The question whether a class can be learned using any given representation
is quite natural. It reflects the situation where a company building learners
cannot enforce its representation of the data/hypothesis on the clients but has
to make for each client a learning algorithm using the client’s representation. The
difference between prescribed and uniform learning would then be that in the
first case the programmers have to adjust for each client the learning program by
hand, while in the second case there is some synthesizer which reads the clients
requirements from some file and then adapts the learner automatically.

Remark 6. Note that in the case of learning with respect to r.e. families, uni-
form learning and prescribed learning are defined in a class-preserving way. Jain
and Stephan [13] showed that there is a one-one numbering of all r.e. sets (that
is a Friedberg Numbering [8]) such that only classes with finitely many infi-
nite sets can be behaviourally correct learned with respect to this numbering as
hypotheses space.

Furthermore, above result can be strengthened to uniform learning by show-
ing that only classes consisting of finite sets are class-comprising-uniformly be-
haviourally correct learnable. To see this, let {H0, H1, H2, . . .} be a Friedberg
numbering [8]. For a given parameter e, a family {G0, G1, G2, . . .} is constructed
from {H0, H1, H2, . . .} such that the following holds for all a:

– For all b, G〈a,b〉 ⊆ Ha;
– G〈a,b〉 = Ha if either b = 0 ∧ |We| = ∞ or b = |We| + 1;
– G〈a,b〉 is finite if either b > 0 ∧ |We| = ∞ or b �= |We| + 1 ∧ |We| < ∞.

Suppose by way of contradiction that there is an r.e. infinite set Ha such that
some class containing Ha can be class-comprising-uniformly behaviourally cor-
rectly learned. Note that for any fixed e and the class {G0, G1, G2, . . .} with
parameter e built as above, there exists exactly one index 〈f(e), g(e)〉 with
G〈f(e),g(e)〉 = Ha. By construction, f(e) = a. By the assumption on uniform
learnability, there is a recursive enumeration of learners N0, N1, N2, . . . such
that each Ne learns the given class with respect to the hypotheses space {G0,
G1, G2, . . .} built with parameter e. As there is a fixed recursive text T for Ha

and one can simulate Ne on T , the function g is limit-recursive (that is, there
exists a recursive function h such that g(x) = limt→∞ h(x, t)). Note that We

is infinite iff g(e) = 0. As {e : |We| = ∞} �≤T K, this gives a contradiction.
So class-comprising uniform behaviourally correct learning only permits to learn
classes of finite sets.

Thus it is reasonable to restrict oneself to the class-preserving versions of
prescribed and uniform learning; this convention has already been adapted in
Definition 4.
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The next result is obvious from the definitions.

Proposition 7. For any notion I of learning and any class L, the following
implications hold: L is uniformly I-learnable ⇒ {L0, L1, L2, . . .} is prescribed
I-learnable ⇒ L is class-preservingly I-learnable ⇒ L is class-comprisingly I-
learnable.

It depends on the chosen learning criterion I, which of the implications can be
reversed. For finite and explanatory learning, all four notions are the same, as
shown in Theorems 8 and 9. A lot of research [11] deals with requiring addi-
tional constraints on how hypotheses are chosen during explanatory learning.
Such requirements change also the relations between the four types of learn-
ing. For confident learning, Theorem 10 shows that the uniform, prescribed and
class-preserving type coincide while class-comprising confident learning is more
general. For conservative learning, Example 11 gives classes which separate all
four types of conservative learning. Theorems 12, 13, 15 and 16 deal with vac-
illatory and behaviourally correct learning. They give classes which, for these
criteria, are class-comprisingly but not class-preservingly learnable as well as
classes which are class-preservingly but not prescribed learnable. The separa-
tion of prescribed from uniform is open for these two criteria.

The importance of prudence is that the hypotheses space and the class of
learned sets coincide; so the learner never conjectures some set it cannot learn.
Fulk [9] showed that prudence is not restrictive for explanatory learning. Jain
and Sharma [12] showed that prudence is not restrictive for vacillatory learning.
In Theorem 17 it is shown that prudence is not restrictive for behaviourally
correct learning. The prudent behaviourally correct learner can be constructed
effectively from the original learner; it is still open whether prudence for explana-
tory and vacillatory learning can be effectivized. Note that Kurtz and Royer [14]
had claimed to have this result but their proof had a bug and the problem had
remained open since then.

2 Finite and Explanatory Learning

Finite learnable classes can be learnt uniformly, because finite learning is deter-
mined by a finite subset of the target language.

Theorem 8. Every class-comprisingly finitely learnable class is also uniformly
finitely learnable.

Proof. Let M be a finite learner for {L0, L1, L2, . . .} using a class-comprising
hypotheses space. Let e be an index for a hypothesis space {H0, H1, H2, . . .}.
That is, We = {〈b, x〉 : x ∈ Hb}. Further suppose {H0, H1, H2, . . .} = {L0, L1,
L2, . . .}. Then a learner Me is defined as follows. Me(T [n]) is defined by the first
case below which applies:

– If there is an m < n with Me(T [m]) �=? then Me(T [n]) = Me(T [m]) for the
least such m;



Prescribed Learning of R.E. Classes 69

– If there are m ≤ n and b ≤ n with M(T [m]) �=? and content(T [m]) ⊆ Hb,n

then Me(T [n]) = b;
– Otherwise Me(T [n]) =?.

The first condition guarantees that Me outputs on T at most one hypothesis be-
sides the symbol ?. Hence every Me is a finite learner. It follows from the defini-
tion of finite learning that Hb = Hc whenever M(T [m]) �= ?, content(T [m]) ⊆ Hb

and content(T [m]) ⊆ Hc. Hence the b chosen in the second case is a correct hy-
pothesis whenever this case applies. Furthermore, this case eventually applies on
texts for languages in {L0, L1, L2, . . .}. This completes the proof that {L0, L1,
L2, . . .} is uniformly finitely learnable. �
The same result holds for explanatory learning.

Theorem 9. Every class-comprisingly explanatorily learnable class is also uni-
formly explanatorily learnable.

Proof. Let L be given and let M be a learner using a hypotheses space {L0,
L1, L2, . . .} containing L and perhaps other languages. Choose i such that Wi =
{〈a, x〉 : x ∈ La}.

Fix any j and assume that j is an index of a hypotheses space {H0, H1,
H2, . . .} for L, that is, assume {H0, H1, H2, . . .} = L and Wj = {〈b, x〉 : x ∈ Hb}.
Let Γj be the function from Remark 3 which assigns to the members of {H0, H1,
H2, . . .} the length-lexicographically least syntactic stabilizing sequences with
respect to the learner M . γj(b, t) is then the t-th approximation of Γj(b) as
defined in Remark 3.

The learner Mj is constructed as follows: Mj(σ) is the least b such that either
γi(M(σ), |σ|) = γj(b, |σ|) or b = |σ|. The latter condition is just to make Mj

total and to terminate the search.
Assume that M converges on some text T to an index a of a language La ∈ L.

As La ∈ L, there is a b with Hb = La; assume that b is the least such index.
As {H0, H1, H2, . . .} = L and M is a learner for {H0, H1, H2, . . .}, an index c
satisfies Γj(c) = Γi(a) iff Hc = La. Hence Mj converges on T to b as, for all
c < b and almost all s, γj(b, s) = γi(a, s) and γj(c, s) �= γi(a, s). It follows that
Mj learns L using the hypotheses space {H0, H1, H2, . . .}. �
The next result shows that class-preserving confident learning coincides with uni-
form confident learning. The proof of the second part shows that class-preserving
confident learning is not closed under taking subclasses.

Theorem 10. (a) Every class-preservingly confidently learnable class L is also
uniformly confidently learnable.

(b) The class {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)} is class-comprisingly but
not class-preservingly confidently learnable.

Proof. (a) Reviewing the proof of Theorem 9, the additional constraints to
those given there on M and {L0, L1, L2, . . .} are that {L0, L1, L2, . . .} = L and
M converges on every text to some index. Assume again that j and {H0, H1,
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H2, . . .} satisfy {L0, L1, L2, . . .} = {H0, H1, H2, . . .} and Wj = {〈b, x〉 : x ∈ Hb}.
Assume that T is any text. Then M converges on T to some index a as M is
confident. By construction, Mj converges then to the least index b with La = Hb.
Hence Mj also converges on all texts and hence Mj is confident. Furthermore, Mj

learns L explanatorily with respect to the hypotheses space {H0, H1, H2, . . .}.
(b) The class {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)} is class-comprisingly

confidently learnable as follows. On a text for a set with up to two elements, the
learner converges to an index for this set using {W0, W1, W2, . . .} as hypotheses
space. The learner does not revise its hypothesis after seeing three elements in
the input, in order to obtain confidence.

Note that {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)} is an r.e. class. To see this,
note that there is a two-place recursive function g with x ∈ K ′ iff g(x, y) = 1 for
almost all y and x /∈ K ′ iff g(x, y) = 0 for infinitely many y. Now let

L2〈x,y〉 = {x, x + y + 1} and

L2〈x,y〉+1 =

⎧
⎨

⎩

{x, x + z + 1} if z is the least number with
z > y and g(x, z) �= 1;

{x} if g(x, z) = 1 for all z > y.

It is easy to verify that {L0, L1, . . .} = {D : |D| = 2∨ (|D| = 1∧D ⊆ K ′)}. Now
assume that some confident learner M for {L0, L1, L2, . . .} uses some hypotheses
space {H0, H1, H2, . . .} with {H0, H1, H2, . . .} = {L0, L1, L2, . . .}. Then one can
define the K-recursive function f with f(x) being the hypothesis to which M
converges on the text x∞. If x ∈ K ′ then Hf(x) = {x} as M learns this set. If
x /∈ K ′ then Hf(x) �= {x} as no member of {H0, H1, H2, . . .} equals {x}. The
test whether Hf(x) = {x} is also K-recursive. This would give a contradiction
to K ′ �≤T K. Thus there is no class-preserving confident learner for {L0, L1,
L2, . . .}. �
For conservative learning, a full hierarchy can be established. Note that the
following example can be transferred to many related notions like monotonic
[22] and non U-shaped learning [2] without giving more insight. Therefore, these
learning criteria are not considered in the present work.

Example 11. (a) The class {D : |D| ≤ 1} is prescribed conservatively but not
uniformly conservatively learnable.

(b) The class {D : |D| < ∞} is class-preservingly conservatively but not
prescribed conservatively learnable.

(c) The class {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)} is class-comprisingly
conservatively but not class-preservingly conservatively learnable.

Proof. (a) The prescribed learner knows the index a of ∅ in the given numbering
{H0, H1, H2, . . .}. So it conjectures Ha until a number x occurs in the input and
an index b is found with x ∈ Hb. Then the learner makes one mind change
to b and keeps this index forever. This learner is conservative and correct as
{x} is the only set in {H0, H1, H2, . . .} containing x. For the second part, let
S be a simple set [20], Se = S ∪ {0, 1, ..., e}, define class-preserving hypotheses



Prescribed Learning of R.E. Classes 71

spaces H0, H1, ..., where He = {He
0 , He

1 , ...} with He
x(y) = 1 if x ∈ Se

y − Se
y−1

and He
x(y) = 0 if x /∈ Se

y − Se
y−1. If {D : |D| ≤ 1} is uniformly conservatively

learnable, then there exists a recursive family of learners N0, N1, N2, . . . such
that for all e ∈ N, Ne conservatively learns the class {D : |D| ≤ 1} with respect
to He. The r.e. set A = {x : for some e, Ne outputs x on #∞} is infinite (as for
all e, Ne outputs an index larger than e) and disjoint to S. This contradicts the
fact that S is simple.

(b) The class of all finite sets is clearly conservatively learnable in the canonical
numbering of the finite sets. Now let I0, I1, I2, . . . be a recursive partition of the
natural numbers into intervals such that there is a simple set A with In �⊆ A for
all n. Let {L0, L1, L2, . . .} be the canonical numbering of the finite sets and let
Hm = Ln for m ∈ In−A and Hm = Ln∪{m+n+t, m+n+t+1} for m ∈ In∩A,
with m ∈ At−At−1. It is easy to see that {H0, H1, H2, . . .} is also a numbering of
all finite sets. Assume now that M is a learner using the hypotheses space {H0,
H1, H2, . . .}. Then one defines a recursive function f as follows: f(x) = b for the
first b found such that x ∈ Hb and M(xk) = b for some k. As all Hb are finite,
the set {f(0), f(1), f(2), . . .} contains infinitely many indices and is recursively
enumerable. Hence there is an x with f(x) ∈ A. It follows that {x} ⊂ Hf(x) as
Hf(x) contains at least two elements. So the learner M overgeneralizes on xk

and is not conservative.
(c) In Theorem 10, it has been shown that the class {D : |D| = 2 ∨ (|D| =

1 ∧ D ⊆ K ′)} is an r.e. class. The class-comprising confident learner given there
is also conservative. Now assume that some conservative learner M for this class
uses some class-preserving hypotheses space {H0, H1, H2, . . .}. Then one can
again define f(x), this time only partial-recursive, to be the b found such that
M outputs b on the text x∞ and x ∈ Hb. Now x ∈ K ′ iff f(x) is defined and
Hf(x) = {x}. This condition can be checked with oracle K although K ′ �≤T K.
From this contradiction follows that there is no class-preserving conservative
learner for {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)}. �

3 Vacillatory and Behaviourally Correct Learning

For vacillatory and behaviourally correct learning, a strict hierarchy from pre-
scribed to class-preserving to class-comprising learning can be established. It re-
mains open whether uniform learning is more restrictive than prescribed learning.

Theorem 12. Let L2a = {〈a, b〉 : b ∈ N} and L2a+1 = {〈a, b〉 : b ≤ |Wa|}.
Then {L0, L1, L2, . . .} is uniformly behaviourally correct learnable and class-
preservingly vacillatorily learnable but neither prescribed vacillatorily learnable
nor class-comprisingly explanatorily learnable.

Proof. Assume that {H0, H1, H2, . . .} = {L0, L1, L2, . . .} and We = {〈b, x〉 :
x ∈ Hb}. Let s be the length and D be the content of the input. Now a learner
Me is constructed. Me first computes the sets

– A = {c ≤ s : D = Hc,s} and
– B = {c ≤ s : D ∩ Hc,s �= ∅};
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then Me follows the first of the following cases which applies:

– If D = ∅ then Me outputs ?;
– If A �= ∅ then Me outputs min(A);
– If B �= ∅ then Me outputs some c ∈ B for which Hc,s has largest number of

elements;
– Otherwise Me repeats the previous conjecture.

The first case, together with the last, make sure that Me is total, starts with ? and
never returns to ? once it has taken another hypothesis. Assume now that Me sees
a text for a language Hb ∈ {L2a, L2a+1} and that b is the least index of Hb in {H0,
H1, H2, . . .}. Furthermore, assume that so much data has been observed such
that the following four conditions hold:

– s ≥ b;
– The datum 〈a, 0〉 is in both, D and Hb,s;
– If Hb �= L2a+1 then |Hb,s| > |L2a+1| and |D| > |L2a+1|;
– If Hb is finite then Hb = Hb,s = D and for all d < b and t ≥ s, Hd,t �= D.

Note that D �= ∅ and B �= ∅ and therefore Me outputs a hypothesis c different
from ?. Now it is shown that Hc = Hb: First note that 〈a, 0〉 ∈ D and b ∈ B,
hence the algorithm chooses c either by the second or the third condition in
the algorithm. It follows that Hc = L2a or Hc = L2a+1. If Hb is finite, it
follows directly from the learning algorithm that b = min(A) for the set A
considered there and hence c = b. If Hb is infinite and L2a+1 is finite, then
|Hc| ≥ |Hb,s| > |L2a+1| and Hc = L2a = Hb. If Hb and L2a+1 are both infinite
then Hb = L2a = L2a+1 and Hc = Hb. So Me is a behaviourally correct learner
for {L0, L1, L2, . . .} using the hypotheses space {H0, H1, H2, . . .}.

To see that {L0, L1, L2, . . .} is class-preservingly vacillatorily learnable, take
Hb = Lb for all b. For each language there are at most 2 indices in {H0, H1,
H2, . . .} and therefore the above described behaviorally correct learner is also a
vacillatory one.

To see that {L0, L1, L2, . . .} is not prescribed vacillatory learnable, one con-
structs a suitable hypotheses space as follows:

H〈a,b〉 =
{

L2a+1 if b = min({s : |Wa,s| = |Wa|});
L2a otherwise.

For each a there is a b with H〈a,b〉 = L2a+1; if Wa is finite then one can take b
as the minimum of the nonempty set {s : |Wa,s| = |Wa|}; if Wa is infinite then
one can take b = 0. The reason for the latter case is that then L2a = L2a+1.
Furthermore, all but at most one of the b satisfy L2a = H〈a,b〉. Hence {H0, H1,
H2, . . .} is a hypotheses space for {L0, L1, L2, . . .}. If there were a prescribed
vacillatory learner using {H0, H1, H2, . . .} as the hypothesis space then there
would also be a K-recursive function f such that f(a) is the maximal element
output by this learner on the canonical text for L2a+1. It would follow that Wa

is finite iff Wa,f(a) = Wa; note that f(a) ≥ 〈a, b〉 ≥ b for the least b such that
L2a+1 = H〈a,b〉. But then a K-recursive procedure could check, given a, whether
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Wa is finite. As such a procedure does not exist [21], {L0, L1, L2, . . .} is not
vacillatorily learnable with respect to the hypotheses space {H0, H1, H2, . . .}.

As just seen, {L0, L1, L2, . . .} is not prescribed vacillatorily learnable and
hence also not prescribed explanatorily learnable. It follows using Theorem 9
that {L0, L1, L2, . . .} is also not class-comprisingly explanatorily learnable. �

Theorem 13. For all a, b let

L〈a,b〉 =

⎧
⎨

⎩

{〈a, c〉 : c ∈ N} if b = 0;
{〈a, c〉 : c ≤ |Wa|} if b = 1;
{〈a, c〉 : c ≤ |Wa,d|} ∪ {〈a + 1, |Wa,d| + e + 1〉} if b = 2 + 〈d, e〉.

The class {L0, L1, L2, . . .} is class-preservingly behaviourally correct learnable
but not prescribed behaviourally correct learnable.

Proof. Recall that |Wa,d| ≤ d + 1 for all d. It is easy to see that {L0, L1,
L2, . . .} is a uniformly r.e. class. Assume that an input of length s and content
D is given. A behaviourally correct learner takes now the first case which applies.

– If there is a pair 〈a, b〉 such that 〈a + 1, a + b + 2〉 < s and L〈a,b〉,s = D then
output 〈a, b〉 for the least pair where these conditions are true.

– If there is an a such that {〈a, 0〉} ⊆ D ⊆ L〈a,0〉 then output 〈a, 0〉.
– Otherwise output ?

In this context it is assumed that for b > 1 and s > 〈a + 1, a + b + 2〉, L〈a,b〉,s =
L〈a,b〉 as one can compute all members directly from the parameters a, b. It is
easy to see that this learner succeeds on all finite sets from {L0, L1, L2, . . .}. So
assume that an infinite set L〈a,0〉 is given. If L〈a,1〉 = L〈a,0〉 then the learner
will eventually vacillate between these two indices. If L〈a,1〉 ⊂ L〈a,0〉 then L〈a,1〉
is finite and as the learner eventually sees an element of L〈a,0〉 − L〈a,1〉, it will
converge to 〈a, 0〉. So {L0, L1, L2, . . .} is class-preservingly behaviourally correct
learnable.

Now a hypotheses space is constructed using which {L0, L1, L2, . . .} cannot
be behaviourally correct learned. For all a, b let

H〈a,0〉 = L〈a,0〉;
H〈a,2b+1〉 = L〈a,b+2〉;

H〈a,2b+2〉 =

⎧
⎪⎨

⎪⎩

{〈a, c〉 : c ≤ |Wa,b|} if Wa,b = Wa;
{〈a, c〉 : c ≤ |Wa,b|} ∪ {〈a + 1, |Wa,b| + s + 1〉} if s is the least

number with
Wa,b ⊂ Wa,s.

It is easy to check that this class is an indexed family, that is, {H0, H1, H2, . . .}
is uniformly recursive. Thus, if one could behaviourally correct learn {L0, L1,
L2, . . .} using {H0, H1, H2, . . .} as the hypotheses space, one could also explana-
torily learn {L0, L1, L2, . . .} using {H0, H1, H2, . . .} (this folklore result is based
on the observation that, for hypotheses space being an indexed family, the mind
changes can be delayed until it can be verified that the later hypothesis differs



74 S. Jain, F. Stephan, and N. Ye

from the earlier one). Using Theorem 9, this would imply that the class from
Theorem 12 (which is contained in {L0, L1, L2, . . .}) is prescribed explanato-
rily learnable and hence prescribed vacillatory learnable. This contradicts Theo-
rem 12. So {L0, L1, L2, . . .} is not prescribed behaviourally correct learnable. �

Corollary 14. Let {L0, L1, L2, . . .} be as in Theorem 13. Then {L0, L1, L2, . . .}
∪ {N} is class-preserving behaviourally correct learnable. Furthermore, no {F0,
F1, F2, . . .} ⊇ {L0, L1, L2, . . .}∪{N} is prescribed behaviourally correct learnable.

For the next result, let In = {2n − 1, 2n, 2n + 1, . . . , 2n+1 − 3, 2n+1 − 2} form a
partition of the natural numbers into intervals of length 2n and let C denote the
plain Kolmogorov complexity [17]. Furthermore, let

A = {m : ∃n [m ∈ In ∧ C(m) < 0.4n]} and
B = {m : ∃n [m ∈ In ∧ C(m) > 0.8n]}

be the sets of numbers of small and large Kolmogorov complexity, respectively.

Theorem 15. Let A and B be the sets of numbers of small and large Kol-
mogorov complexity as above. Then the class consisting of N, A and all sets
A ∪ {b} with b ∈ B is uniformly r.e. and is class-comprisingly but not class-
preservingly behaviourally correct learnable.

Proof. Note that A is recursively enumerable and B is co-r.e.; an indexing of
the class is now given by fixing one index a ∈ A and then letting La = A,
Lb = A ∪ {b} for all b ∈ B and Lb = N for all b ∈ N − B − {a}.

Note that 0 /∈ A∪B. Hence N is the only member of {L0, L1, L2, . . .} contain-
ing 0. Furthermore, let D0, D1, . . . be a canonical enumeration of all finite sets.
Now let

Hb =
{

N if 0 ∈ Db;
Db ∪ A if 0 /∈ Db.

Furthermore, one can build a behaviourally correct learner using the hypotheses
space {H0, H1, H2, . . .} by conjecturing Hb for the unique b with Db = content(σ)
on input σ. It is easy to verify that this learner succeeds on all languages in
{H0, H1, H2, . . .}. Therefore {L0, L1, L2, . . .} is class-comprisingly behaviourally
correct learnable.

Now assume that M is a class-preserving behaviourally correct learner for {L0,
L1, L2, . . .}. There is a family T0, T1, . . . of texts and an n such that

– Tx[n] is a fixed semantic locking sequence for M on A;
– Tx(n) = x;
– for all x, the subsequence Tx(n+1), Tx(n+2), Tx(n+3), . . . of Tx is the same

recursive enumeration of A.

Now one defines two sets X and Y according to the behaviour of M on Tx.

– X is the set of all x such that, for some m > n, M(Tx[m]) conjectures a set
containing x;
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– Y is the set of all x such that, for some m > n, M(Tx[m]) conjectures a set
containing 0.

Both sets are recursively enumerable. The set Y is disjoint to A as, for all x ∈ A
and all m > n, M(Tx[m]) is an index of A. As A is a simple set [17], Y is finite.
As A ∪ B ⊆ X ⊆ A ∪ B ∪ Y , the set A ∪ B is recursively enumerable. For each
sufficiently large n, at least half of elements of In are in A∪B. Now let Jn be the
first 20.6n elements of In to be enumerated into A∪B. The Jn are uniformly r.e.
and due to Kolmogorov-complexity considerations, for all sufficiently large n,
Jn ∩B = ∅. Hence Jn ⊆ A∩ In in contradiction to the fact that |A∩ In| ≤ 20.4n.
This shows that the learner M cannot exist and {L0, L1, L2, . . .} is not class-
preservingly behaviourally correct learnable. �

Theorem 16. There exists an r.e. class L which is class-comprisingly but not
class-preservingly vacillatorily learnable.

4 Prudence for Behaviourally Correct Learning

Osherson, Stob and Weinstein [19] were interested in the question whether every
learnable class is prudently learnable. Fulk [9] showed that every explanatory
learnable class is prudently explanatory learnable. Jain and Sharma [12] showed
the corresponding result for vacillatory learning. The next theorem shows this
result for behaviourally correct learning. In 1988, Kurtz and Royer [14] had
claimed to have this result, but their proof had a bug and the problem had
remained open since then. Furthermore, the construction of the prudent learner
in the next theorem is effective in the original learner. It is still open whether
prudence for explanatory and vacillatory learning can be effectivized.

Theorem 17. If L is a (not necessarily uniformly r.e.) behaviourally correct
learnable class then L is a subclass of an r.e. class which is class-preservingly
behaviourally correct learnable.

Proof. For any set A, let TA be the ascending text which is given by TA(x) = x
for all x ∈ A and TA(x) = # for all x /∈ A. Furthermore, let δ∅ be the empty
string and δA = TA[max(A) + 1] for all finite non-empty sets A. For example,
δ{0,2,3} = 0 # 2 3.

There is a behaviourally correct learner for the class L using the acceptable
numbering {W0, W1, W2, . . .} as hypotheses space and satisfying the following
constraints:

– M is consistent, that is, content(σ) ⊆ WM(σ) for all σ;
– M is rearrangement-independent, that is, WM(σ) = WM(τ) whenever σ, τ

have the same content and length;
– WM(σ) is finite whenever σ is not a semantical locking sequence for M on

WM(σ).
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Kurtz and Royer [14] showed that the first two conditions can be satisfied and
such a learner can be found effectively from any given learner. The third condi-
tion can also be effectively added since the complement of the set of semantical
locking sequences is K-r.e.; that is, σ is not a semantical locking sequence iff
there is a τ in (WM(σ) ∪ {#})∗ and an x ∈ N with x ∈ WM(στ) ⇔ x /∈ WM(σ).
For that reason, M is a behaviourally correct learner for all infinite sets for which
some index is output by M . So, to prove the theorem, one has mainly to take
care of finite sets.

Now the following new learner N is constructed. N is defined by mapping σ
to a hypothesis Hσ; thus the hypotheses space is given directly instead of N . Hσ

takes the first case which applies.

Case (1): H#s = ∅ for all s.
Case (2): HδD first enumerates all elements of D.

Let D′ = {0, 1, . . . , max(D)} − D. Let S = {s : WM(δD#max(D)),s ∩ D′ = ∅}.
For all s ∈ S, enumerate all elements of WM(δD#max(D)),s into HδD .
If WM(δD#max(D))∩D′ �= ∅ then let s = max(S), let E = D∪WM(δD#max(D)),s,
let x = min(WM(δD#max(D)),s+1 ∩ D′) and let F = D ∩ {0, 1, . . . , x}.
Now, if HδF ⊇ E then HδD = HδF else HδD = E.

Case (3): HδD#s with s > 0 is defined as follows. If there is an x such that
HδEx ,s = HδEx

= D for the set Ex = D ∩ {0, 1, . . . , x} or if WM(δD#t) = D
for all t ≥ s then HδD#s = D else HδD#s = HδD .

Case (4): Hσ = HδD#s if Hσ is not defined by Cases (1), (2), (3), s = max({|σ|−
max(D) − 1, 0}) and D = content(σ).

Note that the only infinite sets in the hypotheses space are the ones which are
conjectured by M . So M learns all the infinite sets in the hypotheses space.
Furthermore, for any A in the hypotheses space, if Ex = {0, 1, . . . , x} ∩ A and
δEx#max(Ex) is a semantic locking sequence for M on A, then for all finite D
such that Ex ⊆ D ⊆ A, HδD = A. This can be easily seen by induction on
cardinality of D − Ex, as in Case (2), either HδD is made equal to A or HδD

would simulate HδF for some F such that Ex ⊆ F ⊂ D.
It will be shown first that the hypotheses space covers all sets learned by M

and then it will be shown that all sets in the hypotheses space are learned by N .
Clearly if M learns a finite set D then HδD#s = D for almost all s. Now

consider an infinite set A learned by M . Let Ex = A ∩ {0, 1, 2, . . . , x} for all x.
As M learns A there is a semantic locking sequence τ for M on A. Now let x ∈ A
be such that x > |τ | + max(content(τ)). Then, for the sequence δEx#max(Ex),
there is an η ∈ (Ex ∪ {#})∗ such that |τη| = |δEx#max(Ex)| and content(τη) =
content(δEx#max(Ex)) = Ex. As M is rearrangement-independent, one has that
WM(δEx #max(Ex)) = A. Hence HδEx

= A as well. This completes the first part of
the verification.

For the second part of the verification consider any set A occurring in the
hypotheses space of N . There are three cases, those where A is empty, where A
is finite but not empty and where A is infinite.

Case (a): A = ∅. N learns A as H#s = ∅ for all s by Case (1) in the algorithm
to enumerate the hypotheses space.
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Case (b): A is finite but not empty. Let D be smallest set such that HδD#s = A
for some s. By Case (1) in the algorithm for Hσ, D is not empty.

Assume the subcase A = HδD#s ⊂ HδD . By Case (3) and D being smallest
set such that HδD#t = A for some t, this can happen only if A = D and
WM(δD#t) = D for all t ≥ s. So HδD#t = D for all t ≥ s and hence N learns A
in this subcase as well.

Assume the subcase A = HδD#s = HδD . Hence, by Case (2) it follows that
there is no element in A − D below max(D) since otherwise HδF = A for some
F ⊂ D. Thus, D = A∩{0, 1, . . . , max(D)}. Therefore, HδA#t = A for almost all
t and N learns A.

Case (c): A is infinite. Again, let Ez = A ∩ {0, 1, . . . , z} for all z. As M is
rearrangement-independent, there is a semantic locking sequence for M on A of
the form δEx#max(Ex). Hence only finitely many sets HδEz

are finite. So there is
an y ∈ A such that y > x and y is an upper bound on all elements of these finite
sets HδEz

. Let F be any finite set with Ey ⊆ F ⊆ A. Let Gz = F ∩ {0, 1, . . . , z}.
If z ≥ y then HδGz

= A (as Ex ⊆ Gz ⊆ A) and HδGz
�= F . If z < y then Gz = Ez

and HδGz
�= F again. Furthermore, M does not learn F . Hence HδF #s = HδF =

A for all s. So δEy is a semantic locking sequence for N on A. It follows that
N learns A. This completes the verification that N is a behaviourally correct
learner for all the languages in its hypotheses space. �
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