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• Nan Ye, School of Mathematics and Physics, UQ
• Research: Turn data into insights, predictions and decisions.

broad interest in AI/ML/Stat/DS
theory and algorithms: sequential decision making, statistical learning theory,
numerical optimization, Bayesian learning
applications: autonomous driving, understanding routing behavior, cyber attack
detection, fishery management.
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machine learning has many applications in maths
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world → model → solve → validate → deploy

mathematical modelling

where machine learning comes in

∙ new fundamental tools (e.g., faster matrix multiplication
algorithms)

∙ new function representations (e.g., neural networks, random
forests)

∙ new ways of solving existing models (e.g., neural PDE solvers)
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Theorem. Machine learning has many core ideas
rooted in classical maths.

Proof by a fictitious story: One day, many great mathematicians meet
at Cairns, and a very curious turtle poses this question to them...
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what’s the shape of the wave?

Weierstrass:
polynomials are good approximations

Lagrange:
perfect measurements ⇒ use my interpolating plynomial

Gauss:
perfect or noisy ⇒ use my method of least squares

Gerstner:
use my analytical solution to Euler’s equation

machine learning approach

classical maths approach
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Statistical Learning

∙ We assume a fixed but unknown distribution p(X ,Y ) on the input
X and the output Y .

∙ Each model f : 𝒳 → 𝒴 belongs to a model class ℱ .

∙ Objective: find f ∈ ℱ minimizing the expected risk

R(f ) = Ep ℓ(f (X ),Y ),

where the loss function ℓ : Y × Y → R≥0 measures how well f (X )
agrees with Y .

∙ Expected risk cannot be computed ⇒ estimate using empirical risk

R̂(f ) =
1

n

n∑︁
i=1

ℓ(f (xi ), yi ).
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“Mother” of learning algorithms

∙ Regularized empirical risk minimization:

min
f ∈ℱ

[︁
R̂(f ) + 𝜆C (f )

]︁
,

where

C (f ) is a complexity measure for f .
𝜆 ≥ 0 is the regularization constant.

∙ Intuitively, find f that fits data well and is simple.

learning
=

data + model class + fitness + complexity measure + optimization
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Examples

re
g
re
ss
io
n

linear regression min
w∈Rd

n∑︁
i=1

(xTi w − yi )
2.

ridge regression min
w∈Rd

n∑︁
i=1

(xTi w − yi )
2 + 𝜆||w||22.

LASSO min
w∈Rd

n∑︁
i=1

(xTi w − yi )
2 + 𝜆||w||21.

cl
a
ss
ifi
ca

ti
o
n logistic regression min

w∈Rd

n∑︁
i=1

ln(1 + e−yi x
T
i w) + 𝜆||w||22.

SVM min
w∈Rd ,b∈R

1

2
||w||22 + C

n∑︁
i=1

max(0, 1− yi (x
T
i w + b)).
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Hands-on
sepal petal

length width length width class

5.1 3.5 1.4 0.2 setosa
7. 3.2 4.7 1.4 versicolor
6.3 3.3 6. 2.5 virginica

. . .

try me: https://tinyurl.com/272nbkmy

from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

X, y = load_iris(return_X_y=True)
X_tr, X_ts, y_tr, y_ts= train_test_split(X, y, test_size=0.3,

random_state=42)
reg = LogisticRegression().fit(X_tr, y_tr)
print("MSE (train) = ", reg.score(X_tr, y_tr))
print("MSE (test) = ", reg.score(X_ts, y_ts))
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Making It Work Well

error ≤ approximation error + estimation error + optimization error

ℱ

g

f *fn

f̂n g : ground truth
f *: optimal approximation in ℱ
fn: optimal fit on data

f̂n: computed fit on data

∙ Choose the model class carefully

expressivity of ℱ ↑ ⇒ approximation error ↓, estimation error ↑
choose a simple model class using domain knowledge if possible.

∙ Computing a sub-optimal fit may lead to better generalization.

particularly when ℱ is very complex
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model selection approaches

∙ use data to estimate each option’s generalization performance

validation set, cross validation, bootstrapping

∙ analytically approximate the generalization performance

AIC, BIC, MDL
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Neural Networks (NNs)

biological NN artificial NN (ANN)

x0 = 1

x1

x2

...

xd

Σ

w1

w2

wd

w0

g(x⊤w)

artificial neuron

∙ ANNs

interconnected simple computational units (neurons)
universal approximators
often trained to minimize loss

∙ Neurons

input from incoming edges, output along outgoing edges
computes nonlinearly transformed weighted input sum g(w⊤x)
nonlinearity g known as activation/transfer function
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architecture activation optimizer software

MLP
CNN
RNN
ResNet

transformer
. . .

threshold
sigmoid
ReLU
ELU
GELU
. . .

SGD
AdaGrad
RMSprop
AdaDelta
Adam
. . .

often first-order methods
gradients computed using automatic differentiation

PyTorch
TensorFlow
Google JAX

Keras
MXNet
. . .
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Multilayer Perceptron (MLP)
aka multilayer feedforward neural network

input
layer

hidden
layer

hidden
layer

output
layer

∙ neurons organized in layers

∙ forward edges only (from input neurons to output neurons)

∙ single-hidden layer sigmoid MLPs are universal approximators
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Universal approximation property of single hidden neural net

m∑︁
i=1

𝛼i𝜎(wix + bi ) + 𝛽,

where 𝜎(u) = 1/(1 + e−x) is the sigmoid function.

x2 ≈ 2.2𝜎(−3.15x − 3) + 2.2𝜎(3.15x − 3)− 0.205, x ∈ [−1, 1].

sin(x) ≈ 10.9𝜎(−6.35x − 3.05)− 10.9𝜎(6.35x − 3.05)− 36.6𝜎(−1.3x) + 18.23, x ∈ [−1, 1].
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Feature Learning

https://playground.tensorflow.org/
a sigmoid unit approximately learns the concept of a circular area in 2D plane

• In deep neural networks (> 1 hidden layer), deeper layers are
capable of learning higher-level features.

• This allows learning accurate models from raw features without
handcrafting high-level features.
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Hands-on

try me: https://tinyurl.com/27vvyrky

net = nn.Sequential(nn.Linear(2, 10), nn.ReLU(), nn.Linear(10, 1))
optimizer = optim.SGD(net.parameters(), lr=0.5, momentum=0)
mse = MSELoss()
for i in range(200):

optimizer.zero_grad()
loss = mse(net(X), Y)
loss.backward()
optimizer.step()

learn a single-hidden layer neural network fw(x) by minimizing its mean
squared error on the training set
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PDEs in Classical Maths

domain PDE

fluid flow Navier-Stokes
Poiseuille
Couette

electromagnetism Maxwell’s
epidemiology SIR

. . .

solution method

analytic methods
finite difference
finite volume
finite element
Runge-Kutta

. . .
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Physics-Informed Machine Learning

Applications

∙ Cardiac simulation (Zhang et al., 2022)

∙ 4D-flow MRI (Kissas et al., 2020)

∙ Seismic wave (Karimpouli and Tahmasebi, 2020)

∙ NVIDIA Modulus (previously SimNet) for multi-physics simulation
(Hennigh et al., 2021)

∙ Material sciences, molecular simulations, geophysics, ...
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Inverse problem: data → model

what’s the shape of the wave?

∙ Data-driven: fit a model using data only

∙ Physics-driven: use the governing equation to obtain a solution
consistent with the data

∙ Physics-informed: fit a model consistent with both data and
physics

min
f ∈ℱ

[R̂data(f ) + 𝜇R̂physics(f )]

Physics-based loss R̂physics measures how much physical laws are
violated at selected points.
Physics-Informed Neural Networks (PINN): model is an NN
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Forward problem: model → data

∙ When boundary/initial conditions, instead of data, are given,

min
f ∈ℱ

[R̂boundary(f ) + 𝜇R̂physics(f )]

The loss R̂boundary measures how much boundary/initial conditions
are violated at selected points.
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Example: an inverse problem

utt = c2uxx , (x , t) ∈ [0, 2𝜋]× [0, 10],

observations : {(xi , ti , ui )}ni=1.

∙ Physics-informed machine learning:

min
f ∈ℱ

[︃
1

n

n∑︁
i=1

(u(xi , ti )− ui )
2 + 𝜇

1

m

n∑︁
i=1

r(x ′i , t
′
i )
2

]︃
,

r = utt − c2uxx is the PDE residual,
{(x ′i , t ′i )}mi=1 are selected points in the domain.

∙ Gradient-based optimization methods can be applied to solve the
optimization problem, with all derivatives computed using
automatic differentiation.
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Example: a forward problem / simulation

utt = c2uxx , (x , t) ∈ [0, 2𝜋]× [0, 10],

u(x , 0) = sin(x), x ∈ [0, 2𝜋]

ut(x , 0) = 0, x ∈ [0, 2𝜋].

∙ Physics-informed machine learning:

min
f∈ℱ

[︃
1

n

n∑︁
i=1

(u(xi , 0)− sin(ui ))
2 +

1

n

n∑︁
i=1

(ut(xi , 0))
2 + 𝜇

1

m

n∑︁
i=1

r(x ′
i , t

′
i )

2

]︃
,

{(xi}ni=1 and {(x ′i , t ′i )}mi=1 are selected points in the domain.
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Classical Discrete Optimization

∙ Discrete optimization problem is everywhere: travelling salesman
problem (TSP), vehicle routing, data center resource management,
timetable scheduling, planning a trip to Cairns...

∙ Discrete optimization problems are often intractable in general.

∙ Classical solution methods often rely on problem-specific heuristics,
discovered by experts over time.

∙ Classical solution software often needs to be properly configured to
get the best results.
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Automation with Machine Learning

Applications

∙ Configure algorithms (e.g., configure CPLEX hyperparameters)

∙ Learn an end-to-end solution (e.g., planar TSP, planar convex hulls)

∙ Learn greedy heuristics for decisions in an algorithm (e.g., deciding
which node to travel to in TSP)
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Learning paradigms
∙ Imitation learning

build a training set of good algorithmic decisions, and learn using a
supervised learning algorithm
example: learn to efficiently approximate expensive branching
decisions in branch-and-bound (Alvarez, Louveaux, and Wehenkel,
2017; Gasse et al., 2019)

∙ Reinforcement learning (RL)

AlphaGo and ChatGPT use RL
specify the problem and when reward/penalty is given, do many trial
and error, and gradually improve the solution strategy
example: learn new next node selection strategy in TSP (Dai et al.,
2017)

making it work: good features + good data (+ good reward for RL)

32 / 45



Example

(Dai et al., 2017)

∙ handcrafting features is hard ⇒ learn features using graphical
neural networks

∙ use reinforcement learning to learn both the features and the node
selection strategy
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(Dai et al., 2017)

∙ Problems: minimum vertex cover, maximum cut, TSP

∙ The machine learning approach (S2V-DQN) outperforms strong
approximation algorithms.
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Classical Time Series Models

• Classical time series models like AR, ARMA, ARIMA model
recurrent relationships between current and past.

• For example, in ARMA(p, q)

xt = ϕ1xt−1 + . . .+ ϕpxt−p + wt + θ1wt−1 + . . .+ θqwt−q.

⇒ this is moving linear regression.
• These are limited in their expressivity.

36 / 45



Recurrent Neural Networks (RNNs)

(a) (b) (c) (d)
RNNs are good for various sequence modelling problems, including
(a) One to many, e.g. image captioning
(b) Many to one, e.g. video classification
(c) Many to many, e.g. machine translation
(d) Many to many, e.g. video frame classification
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• The states of hidden neurons in an RNN are updated at each time
step.

• For finite sequences, RNNs can be unfolded as feedforward
networks

h

x

y

= h0

y0

x0

h1

y1

x1

h2

y2

x2

h3

y3

x3

• The slices at all time steps share the same parameters W

ht = fW (ht−1, xt),

yt = gW (ht).
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Example: An RNN for summing a sequence
• The RNN below computes the sum of numbers seen so far

h

x

y

w = 1

w = 1

w = 1

= 1

1

1

3

3

2

6

6

3

10

10

4

• x is the current input, h is the sum of all seen numbers, and y is
the output (= h). Activations are identity.

• The network has been unfolded as a feedforward network with

ht = xt + ht−1,

yt = ht .
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Example: An RNN for autoregression
• We get an autoregressive model if

yt is the prediction for xt+1
ht = [xt , . . . , xt−p+1].

h

x

y

= h0

y0

x0

h1

y1

x1

h2

y2

x2

h3

y3

x3
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Three major classes of RNNs

Vanilla RNN

ht = tanh

(
W

(
ht−1
xt

)
+ b

)
LSTM


ft
it
c̃t
ot

 =


σ
σ

tanh
σ

(
W

(
ht−1
xt

)
+ b

)

ct = ft ⊙ ct−1 + it ⊙ c̃t ,
ht = ot ⊙ tanh(ct).

GRU

rt = σ(Wr [ht−1, xt ] + br ),

h̃t = tanh(Wc [rt ⊙ ht−1, xt ] + br ),

zt = σ(Wz [ht−1, xt ] + bz),

ht = zt ⊙ ht−1 + (1 − zt)⊙ h̃t .
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A Path Forward

• Lots of things not mentioned here, and more on ML/DL here.
• Many excellent courses/books for learning ML/DL.
• Learn general-purpose ML/DL tools

highly recommended: sklearn for ML, PyTorch for DL
they have excellent user interface, documentations and support
communities

• Many pointers in good surveys
PDE: e.g., (Karniadakis et al., 2021)
Discrete optimization: e.g.,(Bengio, Lodi, and Prouvost, 2020)
Time series: e.g., (Ismail Fawaz et al., 2019; Lim and Zohren, 2021)

Many papers provide publicly available implementations.
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https://dmuu2022.github.io/
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Computing and math, a powerful mix,
Artificial intelligence, what a fix!
Insight and accuracy, our goal in sight,
New solutions emerge, to solve and delight.
Science and tech, a future so bright!

ChatGPT

Slides: https://yenan.github.io/talks/anziam23
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