
Reinforcement Learning

Lecture 1 Intro & Overview

Nan Ye

School of Mathematics and Physics
The University of Queensland



an academic...

teaching proving hacking babysitting

supervising some very intelligent people

cartoons generated by AI

1 / 29



theoretically grounded practical
algorithms

for
learning & decision-making

autonomous driving routing behavior analysis fishery stock assessment

MRI reconstruction agriculture analytics

spatial transcriptomics haemodynamics modeling

2 / 29



These Lectures

Reinforcement Learning (RL)

Goals
∙ cover mathematical & algorithmic foundation
∙ in-depth look at a few cool applications
∙ develop basic practical skills

3 / 29



The Journey Begins
from animal learning...

supervised learning
https://www.youtube.com/watch?v=F81VylqnzGE

reinforcement learning

learning to roll over

4 / 29

https://www.youtube.com/watch?v=F81VylqnzGE


Edward Thorndike
Source: Wikipedia

Thornkdike’s Puzzle Box
Source: Thorndike (1898, p. 8)

learning to escape

Thorndike, Animal intelligence: An experimental study of the associative processes in animals. 1898

5 / 29

https://en.wikipedia.org/wiki/Edward_Thorndike


Thorndike’s law of effect (Thorndike, 1911, p. 244) Of several responses made
to the same situation, those which are accompanied or closely followed by satis-
faction to the animal will, other things being equal, be more firmly connected with
the situation, so that, when it recurs, they will be more likely to recur; those which
are accompanied or closely followed by discomfort to the animal will, other things
being equal, have their connections with that situation weakened, so that, when it
recurs, they will be less likely to occur. The greater the satisfaction or discomfort,
the greater the strengthening or weakening of the bond.

in short: what works gets strengthened, what fails gets weakened.
or: trial and error learning / reinforcement learning (RL)

Thorndike, Animal intelligence: Experimental studies, 1911

6 / 29



to Artificial Intelligence (AI)...

∙ Reinforcement learning (RL) in AI
many mathematical formulations of how an agent (algorithm) learns how
to act in an unknown environment by interacting with the environment.

∙ At time t , the agent executes an action at , and the environment
provides its state st and a reward rt as the feedback.

Agent

Environment

atst ,rt

∙ The goal is to learn a policy (mapping from state to action) that
maximizes the expected rewards.

7 / 29



learning to play Atari games
https://www.youtube.com/watch?v=TmPfTpjtdgg

8 / 29

https://www.youtube.com/watch?v=TmPfTpjtdgg


learning dexterity
https://www.youtube.com/watch?v=jwSbzNHGflM

9 / 29

https://www.youtube.com/watch?v=jwSbzNHGflM


learning fast matrix multiplication
https://www.youtube.com/watch?v=fDAPJ7rvcUw

10 / 29

https://www.youtube.com/watch?v=fDAPJ7rvcUw


play Go (DeepMind) play StarCraft (DeepMind) robot control (Boston Dynamics)

autonomous car (Waymo) order dispatching (Qin et al., 2020) ChatGPT (OpenAI)

many others: dialogue systems, healthcare, energy, . . .

Qin et al., Ride-hailing order dispatching at didi via reinforcement learning, 2020

11 / 29

https://deepmind.google/technologies/alphago
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://bostondynamics.com/blog/starting-on-the-right-foot-with-reinforcement-learning/
https://x.company/projects/waymo/
https://openai.com/index/chatgpt/


Roadmap

∙ Introduction and overview
motivation, bandits, big picture

∙ Classical ideas
temporal difference methods, policy gradient, . . .

∙ Deep Reinforcement learning
neural networks, DQN, DDPG, . . .

∙ Advanced techniques
representation learning, stabilization, few-shot learning

∙ Applications
AlphaGo, AlphaTensor, . . .

12 / 29



Devil Slayer

A PHD (Poetic Hero of Downunder) is tasked to slay a devil called Dilemma.

The PHD can attack using a sword or a shield, with a random damage.

The devil can only nullify an attack with a fixed probability.

The damage distributions are unknown. What should the PHD do to
maximize the damage?
(a) Always use the sword.

(b) Always use the shield.

(c) 10x sword, 10x shield, then always the one with higher average.

(d) Throw a coin to decide for each attack.

(e) None of the above.

13 / 29



many other similar problems (Bouneffouf and Rish, 2019)
∙ clinical trials
∙ dynamic pricing
∙ recommender systems
∙ algorithm selection
∙ ...

these are formulated as multi-armed bandits

14 / 29



Multi-armed Bandits (MABs)

What’s the best sequence of pulls for K bandits (slot machines)?

Source: Wikipedia

15 / 29

https://en.wikipedia.org/wiki/Multi-armed_bandit


∙ Various formulations
stochastic bandits, adversarial bandits, Markovian bandits, contextual bandits

∙ We focus on stochastic bandits satisfying the following assumptions
fixed but unknown reward distributions with means 𝜇1, . . . , 𝜇K

for each pull, a reward is sampled from the pulled arm’s distribution,
independently from the past
bounded rewards in [0, 1]

∙ Best strategy: pull the arm with the highest mean reward
⇒ not achievable as reward distributions and their means unknown
⇒ need to explore (try less played arms) and exploit (play rewarding
arms).

16 / 29



Regret Minimization

∙ We would like to play to minimize the expected regret

RT = T𝜇* − E[
T∑︁

t=1

rt ],

where T is the number of pulls, 𝜇* = maxi 𝜇i , and rt is the reward at
time step t .

∙ Alternatively, the expected regret is

RT = T𝜇* −
K∑︁

k=1

𝜇k E[nk (T )],

where nk (T ) is the number of pulls for k at time step T .
∙ Lower bound: RT is at least of the order O(lnT ) (Lai and Robbins,

1985).

Lai and Robbins, Asymptotically efficient adaptive allocation rules, 1985

17 / 29



Upper Confidence Bound (UCB)

Algorithm UCB (Auer, Cesa-Bianchi, and Fischer, 2002)
1: for t = 1, 2, . . . do
2: play machine j with maximum

x̄j +

√︃
2 ln t

nj
,

where

x̄j = average reward for machine j ,

nj = number of plays for machine j .

∙ an example of optimism in the face of uncertainty
∙ each arm is played infinitely many times

Auer, Cesa-Bianchi, and Fischer, Finite-time analysis of the multiarmed bandit problem, 2002

18 / 29



(Auer, Cesa-Bianchi, and Fischer, 2002, Theorem 1) Given K machines
with arbitrary reward distributions with support in [0,1], the expected regret
of UCB is

RT =

⎡⎣8
∑︁

k :𝜇k<𝜇*

(︂
lnT
∆k

)︂⎤⎦+

(︂
1 +

𝜋2

3

)︂(︃ K∑︁
k=1

∆k

)︃
∈ O(lnT ),

where ∆k = 𝜇* − 𝜇k , and 𝜇k is the expected reward for machine k .

Since the expected regret is at least O(lnT ), UCB is optimal.

19 / 29



𝜖t-greedy

Algorithm 𝜖t -greedy (Auer, Cesa-Bianchi, and Fischer, 2002)
Require: d ∈ (0,mink :𝜇k<𝜇* Δk ], any c > 0

1: for t = 1, 2, . . . do
2: play j* = argmaxj x̄j w.p. 1 − 𝜖t , and play a random arm w.p. 𝜖t , where

𝜖t = min

(︂
1,

cK
d2t

)︂
.

Does constant 𝜖t work? No!

20 / 29



(Auer, Cesa-Bianchi, and Fischer, 2002, adapted from Theorem 3) Given K
machines with arbitrary reward distributions with support in [0,1], for large
enough c, the expected regret of 𝜖t -greedy satisfies

RT ≤ 𝛼 lnT ,

for some 𝛼 > 0.

Original theorem (stronger): the probability of pulling a suboptimal arm is
O(1/t) at time step t .

21 / 29



T𝜇* −
∑︀T

t=1 rt against t on Devil Slayer in a simulation

22 / 29



Key Concepts

∙ exploration-exploitation tradeoff
∙ optimism in the face of uncertainty
∙ 𝜖-greedy

these are important for RL in general

∙ UCT (Kocsis, Szepesvári, and Willemson, 2006) and POMCP (Silver and Veness, 2010) are UCB’s
extensions to MDPs and POMDPs

∙ (later) 𝜖-greedy is commonly used in RL for MDPs

23 / 29



Reinforcement Learning

∙ Recall: in RL, an agent (algorithm) learns how to act in an unknown
environment by interacting with the environment.

Agent

Environment

atst ,rt

Bandits are stateless.
∙ General structure of RL algorithms:

RL = loop(experience collection + incremental learning)
1: repeat
2: collect experience
3: incremental learning
4: until termination condition is met

24 / 29



𝜋

E

as,r

environment model
bandits, MDPs, POMDPs

learning target
model, value, policy

behavior policy
exploration vs exploitation

update rules
experience, loss

four dimensions

we will focus on RL for MDPs

25 / 29



𝜋

E

as,r

policy evaluation / prediction
𝜋,E/interactions → V𝜋

value iteration, linear system, Monte Carlo, . . .

planning / control
E → argmax𝜋 V𝜋

value iteration, policy iteration, Monte Carlo, . . .

reinforcement learning
interactions with E → argmax𝜋 V𝜋

Q-learning, SARSA, policy gradient, . . .

𝜋 = policy, V𝜋 = policy value, E = environment

three interconnected problems

RL algorithms often rely on techniques for evaluation and planning

26 / 29



𝜋

E

as,r

policy evaluation / prediction
𝜋,E/interactions → V𝜋

value iteration, linear system, Monte Carlo, . . .

planning / control
E → argmax𝜋 V𝜋

value iteration, policy iteration, Monte Carlo, . . .

reinforcement learning
interactions with E → argmax𝜋 V𝜋

Q-learning, SARSA, policy gradient, . . .

𝜋 = policy, V𝜋 = policy value, E = environment

eval → plan: policy iteration (evaluate a policy, improve greedily)

26 / 29



𝜋

E

as,r

policy evaluation / prediction
𝜋,E/interactions → V𝜋

value iteration, linear system, Monte Carlo, . . .

planning / control
E → argmax𝜋 V𝜋

value iteration, policy iteration, Monte Carlo, . . .

reinforcement learning
interactions with E → argmax𝜋 V𝜋

Q-learning, SARSA, policy gradient, . . .

𝜋 = policy, V𝜋 = policy value, E = environment

eval → RL: evaluate a policy using samples, improve policy

26 / 29



𝜋

E

as,r

policy evaluation / prediction
𝜋,E/interactions → V𝜋

value iteration, linear system, Monte Carlo, . . .

planning / control
E → argmax𝜋 V𝜋

value iteration, policy iteration, Monte Carlo, . . .

reinforcement learning
interactions with E → argmax𝜋 V𝜋

Q-learning, SARSA, policy gradient, . . .

𝜋 = policy, V𝜋 = policy value, E = environment

plan → RL: model-based RL (learn a model, then plan)

26 / 29



𝜋

E

as,r

policy evaluation / prediction
𝜋,E/interactions → V𝜋

value iteration, linear system, Monte Carlo, . . .

planning / control
E → argmax𝜋 V𝜋

value iteration, policy iteration, Monte Carlo, . . .

reinforcement learning
interactions with E → argmax𝜋 V𝜋

Q-learning, SARSA, policy gradient, . . .

𝜋 = policy, V𝜋 = policy value, E = environment

RL → plan: run RL using an environment simulator

26 / 29



Roadmap

∙ Introduction and overview
motivation, bandits, big picture

∙ Classical ideas
temporal difference methods, policy gradient, . . .

∙ Deep Reinforcement learning
neural networks, DQN, DDPG, . . .

∙ Advanced techniques
representation learning, stabilization, few-shot learning

∙ Applications
AlphaGo, AlphaTensor, . . .

27 / 29



References I

Auer, P., N. Cesa-Bianchi, and P. Fischer (2002). Finite-time analysis of
the multiarmed bandit problem. In: Machine learning 47.2, pp. 235–256.
Bouneffouf, D. and I. Rish (2019). A survey on practical applications of

multi-armed and contextual bandits. In: arXiv preprint arXiv:1904.10040.
Kocsis, L., C. Szepesvári, and J. Willemson (2006). Improved

Monte-Carlo Search. In: Univ. Tartu, Estonia, Tech. Rep 1.
Lai, T. L. and H. Robbins (1985). Asymptotically efficient adaptive

allocation rules. In: Advances in applied mathematics 6.1, pp. 4–22.
Qin, Z. et al. (2020). Ride-hailing order dispatching at didi via

reinforcement learning. In: INFORMS Journal on Applied Analytics 50.5,
pp. 272–286.
Silver, D. and J. Veness (2010). Monte-Carlo planning in large

POMDPs. In: Advances in Neural Information Processing Systems 23,
pp. 2164–2172.
Thorndike, E. (1911). Animal intelligence: Experimental studies. The

Macmilllan Company.

28 / 29



References II

Thorndike, E. L. (1898). Animal intelligence: An experimental study of
the associative processes in animals. In: The Psychological Review:
Monograph Supplements 2.4, p. i.

29 / 29


	References
	References

