Reinforcement Learning

Lecture 2 Classical Ideas

Nan Ye

School of Mathematics and Physics The University of Queensland

Roadmap

∙ Introduction and overview

motivation, bandits, big picture

∙ Classical ideas

temporal difference methods, policy gradient, . . .

∙ Deep Reinforcement learning

neural networks, DQN, DDPG, . . .

∙ Advanced techniques

representation learning, stabilization, few-shot learning

∙ Applications

AlphaGo, AlphaTensor, . . .

environment model

bandits, MDPs, POMDPs

learning target

model, value, policy

behavior policy

exploration vs exploitation

update rules

experience, loss

four dimensions

policy evaluation / prediction

 π , *E*/interactions $\rightarrow V_{\pi}$

value iteration, linear system, Monte Carlo, ...

planning / control $E \rightarrow \text{argmax}_{\pi} V_{\pi}$ value iteration, policy iteration, Monte Carlo, ...

reinforcement learning interactions with $E \rightarrow \text{argmax}_{\pi} V_{\pi}$ Q-learning, SARSA, policy gradient, ...

 π = policy, V_{π} = policy value, E = environment

three problems

Markov Decision Processes (MDPs)

MABs are stateless, some problems have states \Rightarrow MDP. State: useful environment information for making decisions.

MDP $(p_0, S, A, T, R, \gamma)$

- initial state distribution p_0
- ∙ state space *S*
- ∙ action space *A*
- ∙ transition model *T*(*s* ′ | *s*, *a*)
- ∙ reward function *R*(*s*, *a*)
- discount factor $\gamma \in [0, 1)$

$$
\max_{\pi} V(\pi) := \mathbb{E}_{\text{S} \sim \rho_0} \; V_{\pi}(s) := \mathbb{E}_{\text{S} \sim \rho_0} \, \mathbb{E}(\sum_{t=0}^{\infty} \gamma^t r_t \mid s_0 = s, \pi).
$$

 $V_{\pi}(s)$: value (expected total discounted reward) of π starting from *s*. Δ*A*: probability distributions on *A*.

Remarks. (a) often exists an optimal deterministic policy $\pi : S \to A$, so they are popular too. (b) often interested in finite horizon problems too.

$$
r_t = \frac{s_{t+1}}{R(s_t, a_t)} \left(\sum_{\substack{E \\ s_{t+1} \sim T(\cdot \mid s_t, a_t)}}^{\pi} \right) a_t \sim \pi(\cdot \mid s_t)
$$

many publicly available benchmark environments

generally follow OpenAI's Gym API

[Gym](https://www.gymlibrary.dev/) lives as [Gymnasium](https://gymnasium.farama.org/) now

classic control

https://gymnasium.farama.org/environments/classic_control/

Ant

Half Cheetah

Hopper

Humanoid Standup

Humanoid

Inverted Double
Pendulum

Inverted Pendulum

Pusher

Reacher

MuJoCo

<https://gymnasium.farama.org/environments/mujoco/>

Asterix

Alien

Adventure

Air Raid

Asteroids

Atlantis

Atari

<https://gymnasium.farama.org/environments/atari/>

DACBench: a benchmark for Dynamic Algorithm Configuration

Compassion of 26.3 Character 27

A benchmark library for Dynamic Algorithm Configuration. Its focus is on reproducibility and comparability of different DAC methods as well as easy analysis of the optimization process.

flappy-bird-env

Gymnasium v0.28.1 C Stars 19

Flappy Bird as a Farama Gymnasium environment.

flappy-bird-gymnasium: A Flappy Bird environment for **Gymnasium**

Gymnasium v0.27.1 C Stars 41

A simple environment for single-agent reinforcement learning algorithms on a clone of Flappy Bird, the hugely popular arcade-style mobile game. Both state and pixel observation environments are available.

gym-cellular-automata: Cellular Automata environments

Gymnasium v0.28.1 C Stars 32

ON THIS PAGE

DACRench: a henchmark for Dynamic Algorithm Configuration

flanny-bird-env

flanny-hird-gymnasium: A Flappy Bird environment for Gymnasium

gym-cellular-automata: Cellular Automata environments

gym-jiminy: Training Robots in Jiminy

gym-saturation: Environments used to prove theorems

gym-trading-eny: Trading Environment

highway-env: Autonomous driving and tactical decisionmaking tasks

matrix-mdp: Easily create discrete MDPs

mobile-env: Environments for coordination of wireless mobile networks

panda-gym: Robotics environments using the PyBullet physics engine

Safety-Gymnasium: Ensuring safety in real-world RL scenarios

stable-retro: Classic retro games, a maintained version of OpenAl Retro

many 3rd party environments

https://gymnasium.farama.org/environments/third_party_environments/

useful toy problems – good starting points

try me

https://colab.research.google.com/drive/1Qr19jg97Q4mRVrQ3yr3_mudE0D6IQCNr

policy evaluation / prediction

 π , *E*/interactions $\rightarrow V_{\pi}$

value iteration, linear system, Monte Carlo, ...

 $plan \rightarrow RL$

- ∙ a building block: learn a model, then plan
- ∙ a source of inspiration: sample-based approximation to exact operations in planning

∙ The optimal value function *V* * satisfies the Bellman optimality equation

$$
V^*(s) = \max_{a} \left(\sum_{s'} T(s' \mid s, a) \left(R(s, a) + \gamma V^*(s') \right) \right).
$$

∙ Equivalently, *V* * is the fixed point of the Bellman operator *H*:

$$
V^*=H(V^*),\quad
$$

where the Bellman operator $H : \mathbf{R}^S \to \mathbf{R}^S$ is defined by

$$
H(V)(s) \stackrel{\text{def}}{=} \max_{a} \left(\sum_{s'} T(s' \mid s, a) \left(R(s, a) + \gamma V(s') \right) \right),
$$

∙ If we choose an arbitrary *V*0, and *Vt*+¹ = *H*(*V^t*), then *V^t* converges to *V* * (proved using Banach fixed-point theorem).

Algorithm The Value Iteration algorithm for computing $\pi \approx \pi^*$

1: Initialize V_0 \triangleright often set to 0 if no good estimates available 2: **for** $t = 1$ to T do 3: $V_t \leftarrow H(V_{t-1})$ \triangleright improve estimates using Bellman operator
4: $V \leftarrow V_t$ 4: *V* ← *V^t* ◁ use *V* to remember most recent estimates 5: Terminate if $||V_t - V_{t-1}||_{\infty} < \epsilon$ 6: $\pi(s) = \operatorname{argmax}_a \left(R(s, a) + \gamma \sum_{s'} T(s' \mid s, a) V(s') \right).$

computing * from *V* * is expensive, and requires knowledge of *R* and *T*

● Often easier to work with *action-value function Q_π(s, a)*, defined as

$$
Q_{\pi}(s,a) = \mathbb{E}(\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0} = s, a_{0} = a, \pi).
$$

∙ Bellman equation for the optimal action value function *Q**:

$$
Q^*(s,a) = \left(\sum_{s'} T(s' \mid s,a) \left(R(s,a) + \gamma \max_{a'} Q^*(s',a') \right) \right).
$$

∙ Equivalently, *Q** is the fixed point of the Bellman operator *H* (*overloaded notation!*):

$$
Q^*=H(Q^*),\quad
$$

where the Bellman operator $H : \mathbf{R}^{S \times A} \to \mathbf{R}^{S \times A}$ is defined by

$$
H(Q)(s, a) \stackrel{\text{def}}{=} \left(\sum_{s'} T(s' \mid s, a) \left(R(s, a) + \gamma \max_{a'} Q(s', a') \right) \right),
$$

• If we choose an arbitrary Q_0 , and $Q_{t+1} = H(Q_t)$, then Q_t converges to Q^* .

Algorithm The Q-Iteration algorithm for computing $\pi \approx \pi^*$

1: Initialize Q_0 \triangleright often set to 0 if no good estimates available 2: **for** $t = 1$ to T **do** 3: $Q_t \leftarrow H(Q_{t-1})$ ⊳ improve estimates using Bellman operator \downarrow *Q* ← *Q*_r \downarrow *D*_b use *Q* to remember most recent estimates 4: *Q* ← *Q^t* ◁ use *Q* to remember most recent estimates 5: Terminate if $||Q_t - Q_{t-1}||_{\infty} < \epsilon$ 6: $\pi(s) = \argmax_{a} Q(s, a)$

 π^* can be computed using *Q* alone, but argmax_a *Q*(*s*, *a*) can be hard

Q-learning

MDPs with finitely many states

● Q-learning (Watkins and Dayan, [1992\)](#page-36-0) tries to directly estimate the optimal Q-function by solving the Bellman optimality equation

$$
Q^*(s,a) = \sum_{s'} T(s' \mid s,a) (R(s,a) + \max_{a'} Q^*(s',a'))
$$

Key idea: replace expectation wrt *s* ′ using a sampled transition.

● If we experience a transition (s, a, s', r) , then we can use it to perform an update

$$
Q(s, a) \leftarrow Q(s, a) + \alpha \underbrace{\overbrace{(r + \gamma \max_{a'} Q(s', a') - Q(s, a))}_{T_D}, \overbrace{D}
$$

where $\alpha > 0$ is the learning rate, s is the current state, and s' and r are the next state and the reward obtained after executing *a*.

• Think of α as a level of trust on the sampled transition.

Algorithm Tabular Q-learning

- 1: Initialise the state-action value function *Q*
- 2: **while** termination condition not met **do**
- 3: Execute the behavior policy to obtain a new experience (s, a, s', r)
- 4: Perform TD update for *Q* using the new experience

$$
Q(s, a) \leftarrow Q(s, a) + \alpha (r + \gamma \max_{a'} Q(s', a') - Q(s, a)).
$$

- ∙ Various termination criteria can be used
	- e.g. little change over recent updates, maximum number of interaction, maximum computation time
- A commonly used behavior policy is the ϵ -greedy policy, which executes a random action w.p. ϵ > 0, and the greedy action argmax_a $Q(s, a)$ w.p. 1 − ϵ .

MDPs with a very large state space – function approximation

- ∙ If we have too many states, we can't use a table to store the Q-function.
- Typically, we use a parametric representation $Q_{\theta}(s, a)$ in this case.
- ∙ The update step in the Q-learning algorithm becomes

$$
\theta \leftarrow \theta - \alpha(Q_{\theta}(\mathbf{s}, \mathbf{a}) - r - \gamma \max_{\mathbf{a}'} Q_{\theta}(\mathbf{s}', \mathbf{a}')) \nabla Q_{\theta}(\mathbf{s}, \mathbf{a}).
$$

Why? This performs a gradient descent on the squared TD error

$$
(Q_{\theta}(s, a) - r - \gamma \max_{a'} Q_{\theta^{-}}(s', a'))^{2},
$$

where $\theta^-=\theta$ is treated as fixed parameters.

• Tabular Q-learning is a special case: $Q_{\theta}(s, a) = \sum_{s' \in S} \theta_{s'} I(s' = s)$.

Algorithm Q-learning with function approximation

- 1: Initialise the state-action value function *Q*
- 2: **while** termination condition not met **do**
- 3: Execute an appropriate behavior policy to obtain a new experience (s, a, s', r)
- 4: Perform TD update

$$
\theta \leftarrow \theta - \alpha(Q_{\theta}(\mathbf{s}, \mathbf{a}) - r - \gamma \max_{\mathbf{a}'} Q_{\theta}(\mathbf{s}', \mathbf{a}')) \nabla Q_{\theta}(\mathbf{s}, \mathbf{a}).
$$

SARSA

∙ SARSA is the same as Q-learning, except that for each update, it first observes a sequence *s*, *a*, *r*, *s'*, *a'* (that's why the name SARSA), then update

$$
Q(s, a) \leftarrow Q(s, a) + \alpha(r + \gamma Q(s', a') - Q(s, a)).
$$

∙ Function approximation can be applied too.

Q-learning (off-policy):	$Q(s, a) \leftarrow Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)$
Q(5, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)	
SARSA (on-policy):	$Q(s, a) \leftarrow Q(s, a) + \alpha \left(\sum_{a'} \frac{r + \gamma Q(s', a') - Q(s, a)}{r + \gamma Q(s', a')} - Q(s, a) \right)$

- Q-learning is off-policy as target policy (greedy) \neq behavior policy (ϵ -greedy).
- ∙ SARSA is an on-policy as target policy = behavior policy.

environment model

bandits, MDPs, POMDPs

learning target

model, value, policy

behavior policy *-greedy*

update rules *TD minimization*

Q-learning/SARSA in the big picture

Policy Optimization Methods

- ∙ Why policy optimization?
	- learn *Q*: computing the policy $\pi(s) = \argmax_{a} Q(s, a)$ can be hard
	- **Extern V: requires lookahead and optimize**
	- learn π : policy is directly available
- ∙ Various policy optimization algorithms: REINFORCE, actor-critic, DPG,

. . .

REINFORCE

∙ REINFORCE (Williams, [1992\)](#page-36-1) directly optimises a parametric policy $\pi_{\theta}(\mathbf{a} \mid \mathbf{s})$ by maximizing its value function

$$
V(\theta) = \sum_{\tau} p(\tau \mid \theta) R(\tau) = \mathbb{E}_{\tau \sim \rho} R(\tau),
$$

where

- $\tau = (s_0, a_0, s_1, a_1, \ldots)$ is a trajectory (state-action sequence),
- *p*(τ | θ) is the distribution of trajectory τ when playing π_{θ} , and
- *R(* τ *)* is the total (discounted) reward collected along τ .
- It computes a stochastic gradient of $V(\theta)$ at each iteration, and then performs gradient ascent.
- A simple parametrization: $\pi_{\theta}(a \mid s)$ as a logistic regression model.
- Usually, it is often computationally intractable to evaluate $V(\theta)$ first, and then evaluate its gradient,
	- in the discrete state case, $V(\theta)$ involves summing over a large number of trajectories.
	- in the continuous state case, computing $V(\theta)$ involves evaluating a complex integral.

Policy gradient theorem

$$
\nabla \, V(\theta) = \mathbb{E}_{\tau \sim \rho} \, R(\tau) \, \nabla \ln p(\tau \mid \theta).
$$

- Why? Because $\nabla \ln p(\tau | \theta) = \frac{\nabla p(\tau | \theta)}{p(\tau | \theta)}$.
- ∙ This gives us a Monte Carlo estimate of the gradient

$$
\nabla V(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} R(\tau^{(i)}) \nabla \ln p(\tau^{(i)} | \theta),
$$

where the trajectories $\tau^{(1)}, \ldots, \tau^{(N)}$ are randomly sampled from $p(\cdot \mid \theta).$

• We need to relate $\nabla \ln p(\tau | \theta)$ back to the policy π_{θ} .

Policy gradient theorem

$$
\nabla \ V(\theta) = \mathbb{E}_{\tau \sim \rho} \sum_{t=0}^{|\tau|-1} R(\tau) \nabla \ln \pi_{\theta}(a_t \mid s_t).
$$

where $|\tau|$ denotes the length of a trajectory (number of state-action pairs).

policy gradient learning = weighted log-likelihood maximization

∙ Why? Note that

$$
\rho(\tau \mid \theta) = \rho(s_1) \prod_{t=0}^{|\tau|-1} \pi(a_t \mid s_t, \theta) \rho(s_{t+1} \mid s_t, a_t)
$$

$$
\nabla \ln \rho(\tau^{(i)} \mid \theta) = \sum_{t=0}^{|\tau_i|-1} \nabla \ln \pi_{\theta}(a_t^{(i)} \mid s_t^{(i)}).
$$

● While *p*($\tau^{(i)}$ | *θ*) depends on the transition probabilities, the gradient of the log probability does not!

Algorithm REINFORCE algorithm

- 1: **while** not terminated **do**
- 2: Simulate π_{θ} to collect trajectories $\tau^{(1)}, \ldots, \tau^{(N)}$.
- 3: Update θ using

$$
\theta \leftarrow \theta + \alpha \left(\frac{1}{N} \sum_{i=1}^N \left(\sum_{t=0}^{\lfloor \tau^{(i)} \rfloor -1} R(\tau^{(i)}) \nabla \ln \pi_\theta(a_t^{(i)} \mid s_t^{(i)}) \right) \right).
$$

REINFORCE is an on-policy method.

Policy gradient theorem

$$
\nabla V(\theta) = \mathbb{E}_{\tau \sim \rho} \sum_{t=0}^{|\tau|-1} \gamma^t (R(\tau_{\geq t}) - b(s_t)) \nabla \ln \pi_\theta(a_t \mid s_t).
$$

where $\tau_{\geq t}=(\boldsymbol{s}_t, \boldsymbol{a}_t, \ldots)$ for $\tau=(\boldsymbol{s}_1, \boldsymbol{a}_1, \ldots),$ and $b(\boldsymbol{s})$ is an arbitrary function of state.

- Focus on future but not past: $\tau_{< t} = (s_0, a_0, \ldots, s_{t-1}, a_{t-1})$ has no effect on $\pi_\theta(a_t | s_t)$.
- ∙ Use a baseline *b*(*s*) for variance reduction.
- ∙ More policy gradients: (Schulman et al., [2015\)](#page-36-2)

environment model

bandits, MDPs, POMDPs

learning target

model, value, policy

behavior policy *target policy*

update rules *weighted likelihood maximization*

policy optimization in the big picture

Model-based RL

Algorithm A general model-based RL approach

- 1: initialize an estimated environment model \tilde{M}
- 2: **for** *t* = 1, 2, . . . **do**
- 3: compute optimal policy $\tilde{\pi}^*$ for \tilde{M}
- 4: collect experience by running the ϵ -greedy policy $\tilde{\pi}_{\epsilon}^*$
- 5: update the environment model \tilde{M} based on collected experience
	- $\tilde{\pi}_{\epsilon}^{*}$ folows $\tilde{\pi}^{*}$ with probability 1 ϵ and takes a random action otherwise.

Tabular model-based RL

- ∙ Initialization
	- **Each** $R(s, a)$ **can be initialized to the maximum possible value to** encourage exploration
	- \tilde{M} can be initialized with a "pseudo-count" $n_{s,a,s'}$ for each transition (s, a, s') .
- ∙ Update
	- Reward update: compute average of rewards encountered.
	- Transition model update: update the transition count *ns*,*a*,*^s* ′ to include both the pseudo-count and the actual count, then compute

 $T(s'|s, a) = n_{s,a,s'}/\sum_{s''} n_{s,a,s''}.$

• The planning problem of computing $\tilde{\pi}^*$ for \tilde{M} can be solved using value/Q iteration.

simple model-based RL in the big picture

- ∙ computing average reward is least squares regression
- ∙ frequency-based transition probability is regularized maximum likelihood estimation
- ∙ Advanced model-based RL: PlaNet (Hafner et al., [2019b\)](#page-36-3), DreamerV1 (Hafner et al., [2019a\)](#page-36-4), DreamerV2 (Hafner et al., [2020\)](#page-36-5), DreamerV3 (Hafner et al., [2023\)](#page-36-6)
- ∙ Model-based methods can be more sample efficient than model-free methods.

Roadmap

∙ Introduction and overview

motivation, bandits, big picture

∙ Classical ideas

temporal difference methods, policy gradient, . . .

∙ Deep Reinforcement learning

neural networks, DQN, DDPG, . . .

∙ Advanced techniques

representation learning, stabilization, few-shot learning

∙ Applications

AlphaGo, AlphaTensor, . . .

References I

- Hafner, D. et al. (2019a). Dream to control: Learning behaviors by latent imagination. In: *arXiv preprint arXiv:1912.01603*.
- \blacksquare Hafner, D. et al. (2019b). Learning latent dynamics for planning from pixels. In: *International Conference on Machine Learning*. PMLR, pp. 2555–2565.
- **Hafner, D. et al. (2020). Mastering Atari with Discrete World Models.** In: *arXiv preprint arXiv:2010.02193*.
- Hafner, D. et al. (2023). Mastering diverse domains through world models. In: *arXiv preprint arXiv:2301.04104*.
- \blacksquare Schulman, J. et al. (2015). High-dimensional continuous control using generalized advantage estimation. In: *arXiv preprint arXiv:1506.02438*.
- Watkins, C. J. and P. Dayan (1992). Q-learning. In: *Machine learning* 8.3-4, pp. 279–292.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. In: *Machine learning* 8.3-4, pp. 229–256.