Reinforcement Learning

Lecture 2 Classical Ideas

Nan Ye

School of Mathematics and Physics
The University of Queensland

THE UNIVERSITY
OF QUEENSLAND

AUSTRALIA

Roadmap

Introduction and overview

motivation, bandits, big picture
Classical ideas

temporal difference methods, policy gradient, . ..
Deep Reinforcement learning

neural networks, DQN, DDPG, ...
Advanced techniques

representation learning, stabilization, few-shot learning
Applications

AlphaGo, AlphaTensor, . ..

1/36

environment model
bandits, MDPs, POMDPs

behavior policy

exploration vs exploitation

S,/ a

four dimensions

learning target
model, value, policy

update rules
experience, loss

2/36

policy evaluation / prediction
«, E /interactions — V;
value iteration, linear system, Monte Carlo, ...

S a
planning / control reinforcement learning
E — argmax, Vi interactions with E — argmax,. Vr
value iteration, policy iteration, Monte Carlo, ... Q-learning, SARSA, policy gradient, ...

w = policy, V> = policy value, E = environment

three problems

3/36

Markov Decision Processes (MDPs)

MABs are stateless, some problems have states = MDP.
State: useful environment information for making decisions.

MDP (p07 S’ A7 T7 R7 ,Y)

e initial state distribution py @
* state space S St < >at (-] 1)
E

e action space A 1= R(st a)

® transition model T(s' | s, a)

® reward function R(s, a) St~ T(-| st,at)
e discount factor v € [0, 1)

Objective: find an optimal (stochastic) policy 7 : S — Ay

max V(7) := Esnpy Vir(5) := Espy ED A | so = s,7).
t=0
V= (s): value (expected total discounted reward) of = starting from s.
A p: probability distributions on A.

Remarks. (a) often exists an optimal deterministic policy = : S — A, so they are popular too.
(b) often interested in finite horizon problems too.
4/36

many publicly available benchmark environments
generally follow OpenAl's Gym API

Gym lives as Gymnasium now

5/36

https://www.gymlibrary.dev/
https://gymnasium.farama.org/

Mountain Car
Acrobot Cart Pole Continuous

/7

N
-

Mountain Car Pendulum

classic control

https://gymnasium.farama.org/environments/classic_control/

6/36

https://gymnasium.farama.org/environments/classic_control/

Ant Half Cheetah Hopper

Inverted Double
Humanoid Standup Humanoid Pendulum

Inverted Pendulum Pusher Reacher

MuJoCo

https://gymnasium.farama.org/environments/mujoco/

7136

https://gymnasium.farama.org/environments/mujoco/

Adventure Air Raid Alien

Amidar Assault Asterix

Asteroids Atlantis

Atari

https://gymnasium.farama.org/environments/atari/

8/36

https://gymnasium.farama.org/environments/atari/

ON THIS PAGE

DACBench: a benchmark for Dynamic Algorithm
DACBench: a benchmark for
Configuration Dynamic Algorithm

Configuration

flappy-bird-env.
flappy-bird-gymnasium: A
A benchmark library for Dynamic Algorithm C ion. lts focus is on ibility and Flappy Bird environment for
Gymnasium

ccomparability of different DAC methods as well as easy analysis of the optimization process.
gym-cellular-automata: Cellular
Automata environments

flappy-bird-env aymejiminy: Training Robots in

Jiminy

Osers| 19 ‘gym-saturation: Environments
used to prove theorems.

Flappy Bird as a Farama Gymnasium environment. gym-trading-env: Trading
Environment

highway-env: Autonomous

il 1 1 11 dr d I d -
flappy-bird-gymnasium: A Flappy Bird environment for i g e ceetsn
Gymnasium atrix-mdp: Easily create

discrete MDPs
(G mnosom 027+ [N mobile-env: Envronments for
coordination of ireless mobile
Asimple for singl i learning algorithms on a clone of Flappy Bird, the networks

panda-gym: Robotics
environments using the
PyBullet physics engine

hugely popuiar arcade-style mobile game. Both state and pixel observation environments are available.

Safety-Gymnasium: Ensuring

gym-cellular-automata: Cellular Automata safety in real-world RL
environments

scenarios
stable-retro: Classic retro
games, a maintained version of
Openal Retro

many 3rd party environments

https://gymnasium.farama.org/environments/third_party_environments/

9/36

https://gymnasium.farama.org/environments/third_party_environments/

L]
2@

L

10¢

301

00

Frozen Lake Cartpole Pendulum
disc. S& A cont. S &disc. A cont. S& A

useful toy problems — good starting points

try me

https://colab.research.google.com/drive/1Qr19jg97Q4mRVrQ3yr3_mudEODEIQCNT

10/36

https://colab.research.google.com/drive/1Qr19jg97Q4mRVrQ3yr3_mudE0D6IQCNr

Planning

policy evaluation / prediction
«, E /interactions — Vi
value iteration, linear system, Monte Carlo, ...

S,r a
planning / control reinforcement learning
E — argmax, Vp interactions with £ — argmax,. Vi
value iteration, policy iteration, Monte Carlo, ... Q-learning, SARSA, policy gradient, ...
plan — RL

® a building block: learn a model, then plan
® a source of inspiration: sample-based approximation to exact operations in planning

11/36

® The optimal value function V* satisfies the Bellman optimality equation
* _ / * (!
V*(s) = max <Z T(s' | s,a) (R(s,a) +vV*(s))) .
s/
e Equivalently, V* is the fixed point of the Bellman operator H:

V* = H(V*),

where the Bellman operator H : RS — RS is defined by

H(V)(s) &' max (Z T(s'| s, a) (R(s.a) + VV(S’))) :

s/

* |f we choose an arbitrary Vp, and Vi1 = H(V:), then V; converges to V* (proved using
Banach fixed-point theorem).

12/36

Algorithm The Value lteration algorithm for computing 7 ~ 7*

1: Initialize Vo > often set to 0 if no good estimates available
2: fort=1to T do

3 Vi + H(Vi—1) > improve estimates using Bellman operator
4: VW > use V to remember most recent estimates
5 Terminate if || Vi — Vi—1]|eo < €

6: m(s) = argmax, (R(s,a) + v Y., T(s' | s,a)V(s)).

computing 7=* from V* is expensive, and requires knowledge of R and T

13/36

Often easier to work with action-value function Q- (s, a), defined as

Q- (s,a) = E(Zwr;\so_sao_afr)
=0

Bellman equation for the optimal action value function Q*:

a)= (Z T(S’ |'s,a) (R(& a) _;'_,ym;)x Q*(S,,a/))) ‘

Equivalently, Q* is the fixed point of the Bellman operator H (overloaded notation!):

Q" = HQ"),

where the Bellman operator H : RS*A — R5%4 is defined by

H(Q)(s, a) (Z T(s' | s,a) ((s, a)+wnr;§x Q(s’,a’))> ,

If we choose an arbitrary Qp, and Q4 = H(Q;), then Q; converges to Q*.

14/36

Algorithm The Q-lteration algorithm for computing 7 ~ 7*

1: Initialize Qo > often set to 0 if no good estimates available
2: fort=1to T do

3 Qi+ H(Qi—1) > improve estimates using Bellman operator
4: Q<+ @ > use Q to remember most recent estimates
5 Terminate if [|Qr — Qi—1]|o < €

6: m(s) = argmax, Q(s, a)

7* can be computed using Q alone, but argmax, Q(s, a) can be hard

15/36

Q-learning

MDPs with finitely many states

® Q-learning (Watkins and Dayan, 1992) tries to directly estimate the optimal Q-function by
solving the Bellman optimality equation

Q*(s,a)=>_T(s' | s,a)(R(s,a) + max Q*(s',d))
al
Sl
Key idea: replace expectation wrt s’ using a sampled transition.
® |f we experience a transition (s, a, §’, r), then we can use it to perform an update
TD target

——
Q(s,a) < Q(s,a) + a(r +ymax Q(s', @) — Q(s, a)),
a

D

where a > 0 is the learning rate, s is the current state, and s’ and r are the next state
and the reward obtained after executing a.

® Think of « as a level of trust on the sampled transition.

16/36

Algorithm Tabular Q-learning

1: Initialise the state-action value function Q

2: while termination condition not met do

3: Execute the behavior policy to obtain a new experience (s, a, s, r)
4: Perform TD update for Q using the new experience

Q(s,a) + Q(s,a) + a(r+~ max Q(s',d) — Q(s, a)).

® Various termination criteria can be used

m e.g. little change over recent updates, maximum number of interaction, maximum
computation time

® A commonly used behavior policy is the e-greedy policy, which executes a random action
w.p. € > 0, and the greedy action argmax, Q(s,a) w.p. 1 —e.

17/36

MDPs with a very large state space — function approximation
¢ |f we have too many states, we can’t use a table to store the Q-function.
e Typically, we use a parametric representation Qy(s, a) in this case.
® The update step in the Q-learning algorithm becomes

00— a(Qu(s,a)—r—ymaxQy(s',a))V Qu(s, a).
al
Why? This performs a gradient descent on the squared TD error
(Q(?(Sv a) — I —ymax Q@‘ (Slv a/))2a
al

where 6§~ = 6 is treated as fixed parameters.
* Tabular Q-learning is a special case: Qy(s,a) =) 5 s0s /(s = 5).

18/36

Algorithm Q-learning with function approximation

. Initialise the state-action value function Qy
: while termination condition not met do

1
2
3: Execute an appropriate behavior policy to obtain a new experience (s, a, s', r)
4 Perform TD update

00— a(Qu(s,a) —r —ymaxQu(s',a)) V Qu(s, a).

19/36

SARSA

SARSA is the same as Q-learning, except that for each update, it first
observes a sequence s, a,r, s, a (that's why the name SARSA), then
update

Q(s,a) + Q(s,a) + a(r+~vQ(s',d) — Q(s, a)).

Function approximation can be applied too.

20/36

target is greedy policy
Q-learning (off-policy): Q(s, a) + Q(s,a) + a(r +ymax Q(s’,a’) —Q(s, a))
a/

target is e-greedy policy
SARSA (on-policy): Q(s,a) < Q(s,a) +a r+~Q(s’,a) —Q(s,a)).

® Q-learning is off-policy as target policy (greedy) # behavior policy (e-greedy).
® SARSA is an on-policy as target policy = behavior policy.

21/36

environment model learning target

bandits, MDPs, POMDPs model, value, policy
S, a
behavior policy update rules
e-greedy TD minimization

Q-learning/SARSA in the big picture

22/36

Policy Optimization Methods

e Why policy optimization?
m learn Q: computing the policy 7(s) = argmax, Q(s, a) can be hard
m learn V: requires lookahead and optimize
m learn 7: policy is directly available

¢ Various policy optimization algorithms: REINFORCE, actor-critic, DPG,

23/36

REINFORCE

e REINFORCE (Williams, 1992) directly optimises a parametric policy
mo(a | s) by maximizing its value function

V(0) => p(r | 0)R(7) = Ernp R(7),

where
m 7 = (S, &, S1, &, . ..) is a trajectory (state-action sequence),
m p(7 | 0) is the distribution of trajectory = when playing =4, and
m A(7) is the total (discounted) reward collected along .
e It computes a stochastic gradient of V(0) at each iteration, and then
performs gradient ascent.

* A simple parametrization: my(a | s) as a logistic regression model.

24/36

e Usually, it is often computationally intractable to evaluate V() first, and
then evaluate its gradient,
m in the discrete state case, V/(0) involves summing over a large number of
trajectories.
m in the continuous state case, computing V() involves evaluating a
complex integral.

25/36

Policy gradient theorem

V V(0) =E,p R(r) VInp(r | 0).

(r]9)
IG) ’

® This gives us a Monte Carlo estimate of the gradient

® Why? Because Vinp(r |) =

NZR)V inp(=7 | 6),

where the trajectories (1), ... 7(N) are randomly sampled from p(- | 6).
® We need to relate V In p(7 | 0) back to the policy my.

26/36

Policy gradient theorem

|7]—1
VV(0) =E,wp > R(r)Vinmg(a | s).
t=0

where || denotes the length of a trajectory (number of state-action pairs).

policy gradient learning = weighted log-likelihood maximization

® Why? Note that

[T]—-1

p(r6) =p(s1) [=(ar | st,0)p(sti1 | st ar)
t=0
[7i|—1

Vinp(r® 10) = 3 Vinme(a” | s).
t=0

e While p(7() | #) depends on the transition probabilities, the gradient of the log probability
does not!

27/36

Algorithm REINFORCE algorithm

1: while not terminated do
2 Simulate 7y to collect trajectories (1), . .., 7
3: Update 6 using

N)

N [1rD)=1
1 ' Nl
9<—0+a(N;(Z R(T('))Vlnﬂ'e(aﬁ)st))>>.

t=0

REINFORCE is an on-policy method.

28/36

Policy gradient theorem

[7]—1
\% V(Q) = ETNP Z "/[(R(th) — b(S[)) Vin 7T9(at | St).
t=0

where 7> = (&, &, ...) for 7 = (81, a1, ...), and b(s) is an arbitrary function

of state.

® Focus on future but not past: 7«; = (S, ao, - - -, St—1, a—1) has no effect on my(a; | st).

® Use a baseline b(s) for variance reduction.
® More policy gradients: (Schulman et al., 2015)

29/36

environment model learning target

bandits, MDPs, POMDPs model, value, policy
S, a
behavior policy update rules
target policy weighted likelihood maximization

policy optimization in the big picture

30/36

Model-based RL

Algorithm A general model-based RL approach

1: initialize an estimated environment model M
2: fort=1,2,...do

3: compute optimal policy #* for M
4 collect experience by running the e-greedy policy 7
5: update the environment model M based on collected experience

e j* folows 7* with probability 1 — ¢ and takes a random action otherwise.

31/36

Tabular model-based RL
e |nitialization
m Each R(s, a) can be initialized to the maximum possible value to
encourage exploration
m M can be initialized with a “pseudo-count” n, , &+ for each transition
(s,a,s).
e Update
m Reward update: compute average of rewards encountered.
m Transition model update: update the transition count ns , » to include both
the pseudo-count and the actual count, then compute
T(s'|s,a) = Ns a5/ > o Ns,as-
e The planning problem of computing #* for M can be solved using
value/Q iteration.

32/36

environment model learning target

bandits, MDPs, POMDPs model, value, policy
S,r a
behavior policy update rules
e-greedy reward regression, tran-

sition density estimation
simple model-based RL in the big picture

® computing average reward is least squares regression
® frequency-based transition probability is regularized maximum likelihood estimation

33/36

¢ Advanced model-based RL: PlaNet (Hafner et al., 2019b), DreamerV1
(Hafner et al., 2019a), DreamerV2 (Hafner et al., 2020), DreamerV3
(Hafner et al., 2023)

¢ Model-based methods can be more sample efficient than model-free
methods.

34/36

Roadmap

Introduction and overview

motivation, bandits, big picture
Classical ideas

temporal difference methods, policy gradient, . ..
Deep Reinforcement learning

neural networks, DQN, DDPG, ...
Advanced techniques

representation learning, stabilization, few-shot learning
Applications

AlphaGo, AlphaTensor, . ..

35/36

References 1

[d Hafner, D. et al. (2019a). Dream to control: Learning behaviors by
latent imagination. In: arXiv preprint arXiv:1912.01603.

[§ Hafner, D. et al. (2019b). Learning latent dynamics for planning from
pixels. In: International Conference on Machine Learning. PMLR,
pp. 2555—-2565.

ﬁ Hafner, D. et al. (2020). Mastering Atari with Discrete World Models. In:
arXiv preprint arXiv:2010.02193.

[§ Hafner, D. et al. (2023). Mastering diverse domains through world
models. In: arXiv preprint arXiv:2301.04104.

[§ Schulman, J. et al. (2015). High-dimensional continuous control using
generalized advantage estimation. In: arXiv preprint arXiv:1506.02438.

[§ Watkins, C. J. and P. Dayan (1992). Q-learning. In: Machine learning
8.3-4, pp. 279-292.

[d Williams, R. J. (1992). Simple statistical gradient-following algorithms
for connectionist reinforcement learning. In: Machine learning 8.3-4,
pp. 229-256.

36/36

	References

