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environment model
bandits, MDPs, POMDPs

behavior policy

exploration vs exploitation

S,/ a

four dimensions

learning target
model, value, policy

update rules
experience, loss
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policy evaluation / prediction
«, E /interactions — V;
value iteration, linear system, Monte Carlo, ...

S a
planning / control reinforcement learning
E — argmax, Vi interactions with E — argmax,. Vr
value iteration, policy iteration, Monte Carlo, ... Q-learning, SARSA, policy gradient, ...

w = policy, V> = policy value, E = environment

three problems
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Markov Decision Processes (MDPs)

MABs are stateless, some problems have states = MDP.
State: useful environment information for making decisions.

MDP (p07 S’ A7 T7 R7 ,Y)

e initial state distribution py @
* state space S St < >at (-] 1)
E

e action space A 1= R(st a)

® transition model T(s' | s, a)

® reward function R(s, a) St~ T(-| st,at)
e discount factor v € [0, 1)

Objective: find an optimal (stochastic) policy 7 : S — Ay

max V(7) := Esnpy Vir(5) := Espy ED A | so = s,7).
t=0
V= (s): value (expected total discounted reward) of = starting from s.
A p: probability distributions on A.

Remarks. (a) often exists an optimal deterministic policy = : S — A, so they are popular too.
(b) often interested in finite horizon problems too.
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many publicly available benchmark environments
generally follow OpenAl's Gym API

Gym lives as Gymnasium now
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https://www.gymlibrary.dev/
https://gymnasium.farama.org/

Mountain Car
Acrobot Cart Pole Continuous

/7

N
-

Mountain Car Pendulum

classic control

https://gymnasium.farama.org/environments/classic_control/
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https://gymnasium.farama.org/environments/classic_control/

Ant Half Cheetah Hopper

Inverted Double
Humanoid Standup Humanoid Pendulum

Inverted Pendulum Pusher Reacher

MuJoCo

https://gymnasium.farama.org/environments/mujoco/
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https://gymnasium.farama.org/environments/mujoco/

Adventure Air Raid Alien

Amidar Assault Asterix

Asteroids Atlantis

Atari

https://gymnasium.farama.org/environments/atari/
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https://gymnasium.farama.org/environments/atari/

ON THIS PAGE

DACBench: a benchmark for Dynamic Algorithm
DACBench: a benchmark for
Configuration Dynamic Algorithm

Configuration

flappy-bird-env.
flappy-bird-gymnasium: A
A benchmark library for Dynamic Algorithm C ion. lts focus is on ibility and Flappy Bird environment for
Gymnasium

ccomparability of different DAC methods as well as easy analysis of the optimization process.
gym-cellular-automata: Cellular
Automata environments

flappy-bird-env aymejiminy: Training Robots in

Jiminy

Osers| 19 ‘gym-saturation: Environments
used to prove theorems.

Flappy Bird as a Farama Gymnasium environment. gym-trading-env: Trading
Environment

highway-env: Autonomous

il 1 1 11 dr d I d -
flappy-bird-gymnasium: A Flappy Bird environment for i g e ceetsn
Gymnasium atrix-mdp: Easily create

discrete MDPs
(G mnosom 027+ [N mobile-env: Envronments for
coordination of ireless mobile
Asimple for singl i learning algorithms on a clone of Flappy Bird, the networks

panda-gym: Robotics
environments using the
PyBullet physics engine

hugely popuiar arcade-style mobile game. Both state and pixel observation environments are available.

Safety-Gymnasium: Ensuring

gym-cellular-automata: Cellular Automata safety in real-world RL
environments

scenarios
stable-retro: Classic retro
games, a maintained version of
Openal Retro

many 3rd party environments

https://gymnasium.farama.org/environments/third_party_environments/
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https://gymnasium.farama.org/environments/third_party_environments/
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Frozen Lake Cartpole Pendulum
disc. S& A cont. S &disc. A cont. S& A

useful toy problems — good starting points

try me

https://colab.research.google.com/drive/1Qr19jg97Q4mRVrQ3yr3_mudEODEIQCNT
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https://colab.research.google.com/drive/1Qr19jg97Q4mRVrQ3yr3_mudE0D6IQCNr

Planning

policy evaluation / prediction
«, E /interactions — Vi
value iteration, linear system, Monte Carlo, ...

S,r a
planning / control reinforcement learning
E — argmax, Vp interactions with £ — argmax,. Vi
value iteration, policy iteration, Monte Carlo, ... Q-learning, SARSA, policy gradient, ...
plan — RL

® a building block: learn a model, then plan
® a source of inspiration: sample-based approximation to exact operations in planning
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® The optimal value function V* satisfies the Bellman optimality equation
* _ / * (!
V*(s) = max <Z T(s' | s,a) (R(s,a) +vV*(s ))) .
s/
e Equivalently, V* is the fixed point of the Bellman operator H:

V* = H(V*),

where the Bellman operator H : RS — RS is defined by

H(V)(s) &' max (Z T(s'| s, a) (R(s.a) + VV(S’))) :

s/

* |f we choose an arbitrary Vp, and Vi1 = H(V:), then V; converges to V* (proved using
Banach fixed-point theorem).
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Algorithm The Value lteration algorithm for computing 7 ~ 7*

1: Initialize Vo > often set to 0 if no good estimates available
2: fort=1to T do

3 Vi + H(Vi—1) > improve estimates using Bellman operator
4: VW > use V to remember most recent estimates
5 Terminate if || Vi — Vi—1]|eo < €

6: m(s) = argmax, (R(s,a) + v Y., T(s' | s,a)V(s)).

computing 7=* from V* is expensive, and requires knowledge of R and T
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Often easier to work with action-value function Q- (s, a), defined as

Q- (s,a) = E(Zwr;\so_sao_afr)
=0

Bellman equation for the optimal action value function Q*:

a)= (Z T(S’ |'s,a) (R(& a) _;'_,ym;)x Q*(S,,a/))) ‘

Equivalently, Q* is the fixed point of the Bellman operator H (overloaded notation!):

Q" = HQ"),

where the Bellman operator H : RS*A — R5%4 is defined by

H(Q)(s, a) (Z T(s' | s,a) ( (s, a)+wnr;§x Q(s’,a’))> ,

If we choose an arbitrary Qp, and Q4 = H(Q;), then Q; converges to Q*.
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Algorithm The Q-lteration algorithm for computing 7 ~ 7*

1: Initialize Qo > often set to 0 if no good estimates available
2: fort=1to T do

3 Qi+ H(Qi—1) > improve estimates using Bellman operator
4: Q<+ @ > use Q to remember most recent estimates
5 Terminate if [|Qr — Qi—1]|o < €

6: m(s) = argmax, Q(s, a)

7* can be computed using Q alone, but argmax, Q(s, a) can be hard
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Q-learning

MDPs with finitely many states

® Q-learning (Watkins and Dayan, 1992) tries to directly estimate the optimal Q-function by
solving the Bellman optimality equation

Q*(s,a)=>_T(s' | s,a)(R(s,a) + max Q*(s',d))
al
Sl
Key idea: replace expectation wrt s’ using a sampled transition.
® |f we experience a transition (s, a, §’, r), then we can use it to perform an update
TD target

——
Q(s,a) < Q(s,a) + a(r +ymax Q(s', @) — Q(s, a)),
a

D

where a > 0 is the learning rate, s is the current state, and s’ and r are the next state
and the reward obtained after executing a.

® Think of « as a level of trust on the sampled transition.
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Algorithm Tabular Q-learning

1: Initialise the state-action value function Q

2: while termination condition not met do

3: Execute the behavior policy to obtain a new experience (s, a, s, r)
4: Perform TD update for Q using the new experience

Q(s,a) + Q(s,a) + a(r+~ max Q(s',d) — Q(s, a)).

® Various termination criteria can be used

m e.g. little change over recent updates, maximum number of interaction, maximum
computation time

® A commonly used behavior policy is the e-greedy policy, which executes a random action
w.p. € > 0, and the greedy action argmax, Q(s,a) w.p. 1 —e.
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MDPs with a very large state space — function approximation
¢ |f we have too many states, we can’t use a table to store the Q-function.
e Typically, we use a parametric representation Qy(s, a) in this case.
® The update step in the Q-learning algorithm becomes

00— a(Qu(s,a)—r—ymaxQy(s',a))V Qu(s, a).
al
Why? This performs a gradient descent on the squared TD error
(Q(?(Sv a) — I —ymax Q@‘ (Slv a/))2a
al

where 6§~ = 6 is treated as fixed parameters.
* Tabular Q-learning is a special case: Qy(s,a) = ) 5 s0s /(s = 5).
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Algorithm Q-learning with function approximation

. Initialise the state-action value function Qy
: while termination condition not met do

1
2
3: Execute an appropriate behavior policy to obtain a new experience (s, a, s', r)
4 Perform TD update

00— a(Qu(s,a) —r —ymaxQu(s',a)) V Qu(s, a).
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SARSA

SARSA is the same as Q-learning, except that for each update, it first
observes a sequence s, a,r, s, a (that's why the name SARSA), then
update

Q(s,a) + Q(s,a) + a(r+~vQ(s',d) — Q(s, a)).

Function approximation can be applied too.
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target is greedy policy
Q-learning (off-policy):  Q(s, a) + Q(s,a) + a(r +ymax Q(s’,a’) —Q(s, a))
a/

target is e-greedy policy
SARSA (on-policy): Q(s,a) < Q(s,a) +a r+~Q(s’,a) —Q(s,a)).

® Q-learning is off-policy as target policy (greedy) # behavior policy (e-greedy).
® SARSA is an on-policy as target policy = behavior policy.
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environment model learning target

bandits, MDPs, POMDPs model, value, policy
S, a
behavior policy update rules
e-greedy TD minimization

Q-learning/SARSA in the big picture
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Policy Optimization Methods

e Why policy optimization?
m learn Q: computing the policy 7(s) = argmax, Q(s, a) can be hard
m learn V: requires lookahead and optimize
m learn 7: policy is directly available

¢ Various policy optimization algorithms: REINFORCE, actor-critic, DPG,
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REINFORCE

e REINFORCE (Williams, 1992) directly optimises a parametric policy
mo(a | s) by maximizing its value function

V(0) => p(r | 0)R(7) = Ernp R(7),

where
m 7 = (S, &, S1, &, . ..) is a trajectory (state-action sequence),
m p(7 | 0) is the distribution of trajectory = when playing =4, and
m A(7) is the total (discounted) reward collected along .
e It computes a stochastic gradient of V(0) at each iteration, and then
performs gradient ascent.

* A simple parametrization: my(a | s) as a logistic regression model.
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e Usually, it is often computationally intractable to evaluate V() first, and
then evaluate its gradient,
m in the discrete state case, V/(0) involves summing over a large number of
trajectories.
m in the continuous state case, computing V() involves evaluating a
complex integral.
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Policy gradient theorem

V V(0) =E,p R(r) VInp(r | 0).

(r]9)
IG) ’

® This gives us a Monte Carlo estimate of the gradient

® Why? Because Vinp(r | ) =

NZR )V inp(=7 | 6),

where the trajectories (1), ... 7(N) are randomly sampled from p(- | 6).
® We need to relate V In p(7 | 0) back to the policy my.
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Policy gradient theorem

|7]—1
VV(0) =E,wp > R(r)Vinmg(a | s).
t=0

where || denotes the length of a trajectory (number of state-action pairs).

policy gradient learning = weighted log-likelihood maximization

® Why? Note that

[T]—-1

p(r6) =p(s1) [ =(ar | st,0)p(sti1 | st ar)
t=0
[7i|—1

Vinp(r® 10) = 3 Vinme(a” | s).
t=0

e While p(7() | #) depends on the transition probabilities, the gradient of the log probability
does not!
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Algorithm REINFORCE algorithm

1: while not terminated do
2 Simulate 7y to collect trajectories (1), . .., 7
3: Update 6 using

N)

N [1rD)=1
1 ' Nl
9<—0+a(N;(Z R(T('))Vlnﬂ'e(aﬁ)st))>>.

t=0

REINFORCE is an on-policy method.
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Policy gradient theorem

[7]—1
\% V(Q) = ETNP Z "/[(R(th) — b(S[)) Vin 7T9(at | St).
t=0

where 7> = (&, &, ...) for 7 = (81, a1, ...), and b(s) is an arbitrary function

of state.

® Focus on future but not past: 7«; = (S, ao, - - -, St—1, a—1) has no effect on my(a; | st).

® Use a baseline b(s) for variance reduction.
® More policy gradients: (Schulman et al., 2015)
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environment model learning target

bandits, MDPs, POMDPs model, value, policy
S, a
behavior policy update rules
target policy weighted likelihood maximization

policy optimization in the big picture
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Model-based RL

Algorithm A general model-based RL approach

1: initialize an estimated environment model M
2: fort=1,2,...do

3:  compute optimal policy #* for M
4 collect experience by running the e-greedy policy 7
5: update the environment model M based on collected experience

e j* folows 7* with probability 1 — ¢ and takes a random action otherwise.
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Tabular model-based RL
e |nitialization
m Each R(s, a) can be initialized to the maximum possible value to
encourage exploration
m M can be initialized with a “pseudo-count” n, , &+ for each transition
(s,a,s).
e Update
m Reward update: compute average of rewards encountered.
m Transition model update: update the transition count ns , » to include both
the pseudo-count and the actual count, then compute
T(s'|s,a) = Ns a5/ > o Ns,as-
e The planning problem of computing #* for M can be solved using
value/Q iteration.
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environment model learning target

bandits, MDPs, POMDPs model, value, policy
S,r a
behavior policy update rules
e-greedy reward regression, tran-

sition density estimation
simple model-based RL in the big picture

® computing average reward is least squares regression
® frequency-based transition probability is regularized maximum likelihood estimation
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¢ Advanced model-based RL: PlaNet (Hafner et al., 2019b), DreamerV1
(Hafner et al., 2019a), DreamerV2 (Hafner et al., 2020), DreamerV3
(Hafner et al., 2023)

¢ Model-based methods can be more sample efficient than model-free
methods.
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