
Reinforcement Learning

Lecture 2 Classical Ideas

Nan Ye

School of Mathematics and Physics
The University of Queensland

Roadmap

∙ Introduction and overview
motivation, bandits, big picture

∙ Classical ideas
temporal difference methods, policy gradient, . . .

∙ Deep Reinforcement learning
neural networks, DQN, DDPG, . . .

∙ Advanced techniques
representation learning, stabilization, few-shot learning

∙ Applications
AlphaGo, AlphaTensor, . . .

1 / 36

𝜋

E

as,r

environment model
bandits, MDPs, POMDPs

learning target
model, value, policy

behavior policy
exploration vs exploitation

update rules
experience, loss

four dimensions

2 / 36

𝜋

E

as,r

policy evaluation / prediction
𝜋,E/interactions → V𝜋

value iteration, linear system, Monte Carlo, . . .

planning / control
E → argmax𝜋 V𝜋

value iteration, policy iteration, Monte Carlo, . . .

reinforcement learning
interactions with E → argmax𝜋 V𝜋

Q-learning, SARSA, policy gradient, . . .

𝜋 = policy, V𝜋 = policy value, E = environment

three problems

3 / 36

Markov Decision Processes (MDPs)
MABs are stateless, some problems have states⇒ MDP.
State: useful environment information for making decisions.

MDP (p0,S,A,T ,R, 𝛾)

∙ initial state distribution p0
∙ state space S
∙ action space A
∙ transition model T (s′ | s, a)
∙ reward function R(s, a)
∙ discount factor 𝛾 ∈ [0, 1)

𝜋

E
st+1 ∼ T (· | st , at)

at ∼ 𝜋(· | st)
st+1

rt = R(st , at)

Objective: find an optimal (stochastic) policy 𝜋 : S → ΔA

max
𝜋

V (𝜋) := Es∼p0 V𝜋(s) := Es∼p0 E(
∞∑︁
t=0

𝛾t rt | s0 = s, 𝜋).

V𝜋(s): value (expected total discounted reward) of 𝜋 starting from s.
ΔA: probability distributions on A.

Remarks. (a) often exists an optimal deterministic policy 𝜋 : S → A, so they are popular too.
(b) often interested in finite horizon problems too.

4 / 36

many publicly available benchmark environments

generally follow OpenAI’s Gym API

Gym lives as Gymnasium now

5 / 36

https://www.gymlibrary.dev/
https://gymnasium.farama.org/

classic control
https://gymnasium.farama.org/environments/classic_control/

6 / 36

https://gymnasium.farama.org/environments/classic_control/

MuJoCo
https://gymnasium.farama.org/environments/mujoco/

7 / 36

https://gymnasium.farama.org/environments/mujoco/

Atari
https://gymnasium.farama.org/environments/atari/

8 / 36

https://gymnasium.farama.org/environments/atari/

many 3rd party environments
https://gymnasium.farama.org/environments/third_party_environments/

9 / 36

https://gymnasium.farama.org/environments/third_party_environments/

Frozen Lake
disc. S & A

Cartpole
cont. S & disc. A

Pendulum
cont. S & A

useful toy problems – good starting points

try me
https://colab.research.google.com/drive/1Qr19jg97Q4mRVrQ3yr3_mudE0D6IQCNr

10 / 36

https://colab.research.google.com/drive/1Qr19jg97Q4mRVrQ3yr3_mudE0D6IQCNr

Planning

𝜋

E

as,r

policy evaluation / prediction
𝜋,E/interactions → V𝜋

value iteration, linear system, Monte Carlo, . . .

planning / control
E → argmax𝜋 V𝜋

value iteration, policy iteration, Monte Carlo, . . .

reinforcement learning
interactions with E → argmax𝜋 V𝜋

Q-learning, SARSA, policy gradient, . . .

plan→ RL
∙ a building block: learn a model, then plan
∙ a source of inspiration: sample-based approximation to exact operations in planning

11 / 36

∙ The optimal value function V* satisfies the Bellman optimality equation

V*(s) = max
a

⎛⎝∑︁
s′

T (s′ | s, a)
(︀
R(s, a) + 𝛾V*(s′)

)︀⎞⎠ .

∙ Equivalently, V* is the fixed point of the Bellman operator H:

V* = H(V*),

where the Bellman operator H : RS → RS is defined by

H(V)(s) def
= max

a

⎛⎝∑︁
s′

T (s′ | s, a)
(︀
R(s, a) + 𝛾V (s′)

)︀⎞⎠ ,

∙ If we choose an arbitrary V0, and Vt+1 = H(Vt), then Vt converges to V* (proved using
Banach fixed-point theorem).

12 / 36

Algorithm The Value Iteration algorithm for computing 𝜋 ≈ 𝜋*

1: Initialize V0 ◁ often set to 0 if no good estimates available
2: for t = 1 to T do
3: Vt ← H(Vt−1) ◁ improve estimates using Bellman operator
4: V ← Vt ◁ use V to remember most recent estimates
5: Terminate if ‖Vt − Vt−1‖∞ < 𝜖

6: 𝜋(s) = argmaxa

(︀
R(s, a) + 𝛾

∑︀
s′ T (s′ | s, a)V (s′)

)︀
.

computing 𝜋* from V* is expensive, and requires knowledge of R and T

13 / 36

∙ Often easier to work with action-value function Q𝜋(s, a), defined as

Q𝜋(s, a) = E(
∞∑︁
t=0

𝛾t rt | s0 = s, a0 = a, 𝜋).

∙ Bellman equation for the optimal action value function Q*:

Q*(s, a) =

⎛⎝∑︁
s′

T (s′ | s, a)
(︂

R(s, a) + 𝛾max
a′

Q*(s′, a′)

)︂⎞⎠ .

∙ Equivalently, Q* is the fixed point of the Bellman operator H (overloaded notation!):

Q* = H(Q*),

where the Bellman operator H : RS×A → RS×A is defined by

H(Q)(s, a) def
=

⎛⎝∑︁
s′

T (s′ | s, a)
(︂

R(s, a) + 𝛾max
a′

Q(s′, a′)

)︂⎞⎠ ,

∙ If we choose an arbitrary Q0, and Qt+1 = H(Qt), then Qt converges to Q*.

14 / 36

Algorithm The Q-Iteration algorithm for computing 𝜋 ≈ 𝜋*

1: Initialize Q0 ◁ often set to 0 if no good estimates available
2: for t = 1 to T do
3: Qt ← H(Qt−1) ◁ improve estimates using Bellman operator
4: Q ← Qt ◁ use Q to remember most recent estimates
5: Terminate if ‖Qt −Qt−1‖∞ < 𝜖

6: 𝜋(s) = argmaxa Q(s, a)

𝜋* can be computed using Q alone, but argmaxa Q(s, a) can be hard

15 / 36

Q-learning

MDPs with finitely many states
∙ Q-learning (Watkins and Dayan, 1992) tries to directly estimate the optimal Q-function by

solving the Bellman optimality equation

Q*(s, a) =
∑︁
s′

T (s′ | s, a)(R(s, a) + max
a′

Q*(s′, a′))

Key idea: replace expectation wrt s′ using a sampled transition.
∙ If we experience a transition (s, a, s′, r), then we can use it to perform an update

Q(s, a)← Q(s, a) + 𝛼(

TD target⏞ ⏟
r + 𝛾max

a′
Q(s′, a′)− Q(s, a))⏟ ⏞

TD

,

where 𝛼 > 0 is the learning rate, s is the current state, and s′ and r are the next state
and the reward obtained after executing a.

∙ Think of 𝛼 as a level of trust on the sampled transition.

16 / 36

Algorithm Tabular Q-learning
1: Initialise the state-action value function Q
2: while termination condition not met do
3: Execute the behavior policy to obtain a new experience (s, a, s′, r)
4: Perform TD update for Q using the new experience

Q(s, a)← Q(s, a) + 𝛼(r + 𝛾max
a′

Q(s′, a′)−Q(s, a)).

∙ Various termination criteria can be used

e.g. little change over recent updates, maximum number of interaction, maximum
computation time

∙ A commonly used behavior policy is the 𝜖-greedy policy, which executes a random action
w.p. 𝜖 > 0, and the greedy action argmaxa Q(s, a) w.p. 1− 𝜖.

17 / 36

MDPs with a very large state space – function approximation
∙ If we have too many states, we can’t use a table to store the Q-function.
∙ Typically, we use a parametric representation Q𝜃(s,a) in this case.
∙ The update step in the Q-learning algorithm becomes

𝜃 ← 𝜃 − 𝛼(Q𝜃(s,a)− r − 𝛾max
a′

Q𝜃(s′,a′))∇Q𝜃(s,a).

Why? This performs a gradient descent on the squared TD error

(Q𝜃(s,a)− r − 𝛾max
a′

Q𝜃−(s′,a′))2,

where 𝜃− = 𝜃 is treated as fixed parameters.
∙ Tabular Q-learning is a special case: Q𝜃(s,a) =

∑︀
s′∈S 𝜃s′ I(s′ = s).

18 / 36

Algorithm Q-learning with function approximation
1: Initialise the state-action value function Q𝜃

2: while termination condition not met do
3: Execute an appropriate behavior policy to obtain a new experience (s, a, s′, r)
4: Perform TD update

𝜃 ← 𝜃 − 𝛼(Q𝜃(s, a)− r − 𝛾max
a′

Q𝜃(s′, a′))∇Q𝜃(s, a).

19 / 36

SARSA

∙ SARSA is the same as Q-learning, except that for each update, it first
observes a sequence s,a, r , s′,a′ (that’s why the name SARSA), then
update

Q(s,a)← Q(s,a) + 𝛼(r + 𝛾Q(s′,a′)−Q(s,a)).

∙ Function approximation can be applied too.

20 / 36

Q-learning (off-policy): Q(s, a)← Q(s, a) + 𝛼(

target is greedy policy⏞ ⏟
r + 𝛾max

a′
Q(s′, a′)−Q(s, a))

SARSA (on-policy): Q(s, a)← Q(s, a) + 𝛼(

target is 𝜖-greedy policy⏞ ⏟
r + 𝛾Q(s′, a′) −Q(s, a)).

∙ Q-learning is off-policy as target policy (greedy) ̸= behavior policy (𝜖-greedy).
∙ SARSA is an on-policy as target policy = behavior policy.

21 / 36

𝜋

E

as,r

environment model
bandits, MDPs, POMDPs

learning target
model, value, policy

behavior policy
𝜖-greedy

update rules
TD minimization

Q-learning/SARSA in the big picture

22 / 36

Policy Optimization Methods

∙ Why policy optimization?
learn Q: computing the policy 𝜋(s) = argmaxa Q(s, a) can be hard
learn V : requires lookahead and optimize
learn 𝜋: policy is directly available

∙ Various policy optimization algorithms: REINFORCE, actor-critic, DPG,
. . .

23 / 36

REINFORCE

∙ REINFORCE (Williams, 1992) directly optimises a parametric policy
𝜋𝜃(a | s) by maximizing its value function

V (𝜃) =
∑︁
𝜏

p(𝜏 | 𝜃)R(𝜏) = E𝜏∼p R(𝜏),

where
𝜏 = (s0, a0, s1, a1, . . .) is a trajectory (state-action sequence),
p(𝜏 | 𝜃) is the distribution of trajectory 𝜏 when playing 𝜋𝜃, and
R(𝜏) is the total (discounted) reward collected along 𝜏 .

∙ It computes a stochastic gradient of V (𝜃) at each iteration, and then
performs gradient ascent.

∙ A simple parametrization: 𝜋𝜃(a | s) as a logistic regression model.

24 / 36

∙ Usually, it is often computationally intractable to evaluate V (𝜃) first, and
then evaluate its gradient,

in the discrete state case, V (𝜃) involves summing over a large number of
trajectories.
in the continuous state case, computing V (𝜃) involves evaluating a
complex integral.

25 / 36

Policy gradient theorem

∇V (𝜃) = E𝜏∼p R(𝜏)∇ lnp(𝜏 | 𝜃).

∙ Why? Because ∇ ln p(𝜏 | 𝜃) = ∇ p(𝜏 |𝜃)
p(𝜏 |𝜃) .

∙ This gives us a Monte Carlo estimate of the gradient

∇V (𝜃) ≈
1
N

N∑︁
i=1

R(𝜏 (i))∇ ln p(𝜏 (i) | 𝜃),

where the trajectories 𝜏 (1), . . . , 𝜏 (N) are randomly sampled from p(· | 𝜃).
∙ We need to relate ∇ ln p(𝜏 | 𝜃) back to the policy 𝜋𝜃 .

26 / 36

Policy gradient theorem

∇V (𝜃) = E𝜏∼p

|𝜏 |−1∑︁
t=0

R(𝜏)∇ ln𝜋𝜃(at | st).

where |𝜏 | denotes the length of a trajectory (number of state-action pairs).

policy gradient learning = weighted log-likelihood maximization

∙ Why? Note that

p(𝜏 | 𝜃) = p(s1)

|𝜏 |−1∏︁
t=0

𝜋(at | st , 𝜃)p(st+1 | st , at)

∇ ln p(𝜏 (i) | 𝜃) =
|𝜏i |−1∑︁

t=0

∇ ln𝜋𝜃(a
(i)
t | s

(i)
t).

∙ While p(𝜏 (i) | 𝜃) depends on the transition probabilities, the gradient of the log probability
does not!

27 / 36

Algorithm REINFORCE algorithm
1: while not terminated do
2: Simulate 𝜋𝜃 to collect trajectories 𝜏 (1), . . . , 𝜏 (N).
3: Update 𝜃 using

𝜃 ← 𝜃 + 𝛼

⎛⎝ 1
N

N∑︁
i=1

⎛⎝|𝜏 (i)|−1∑︁
t=0

R(𝜏 (i))∇ ln𝜋𝜃(a
(i)
t | s

(i)
t)

⎞⎠⎞⎠ .

REINFORCE is an on-policy method.

28 / 36

Policy gradient theorem

∇V (𝜃) = E𝜏∼p

|𝜏 |−1∑︁
t=0

𝛾t(R(𝜏≥t)− b(st))∇ ln𝜋𝜃(at | st).

where 𝜏≥t = (st ,at , . . .) for 𝜏 = (s1,a1, . . .), and b(s) is an arbitrary function
of state.

∙ Focus on future but not past: 𝜏<t = (s0, a0, . . . , st−1, at−1) has no effect on 𝜋𝜃(at | st).
∙ Use a baseline b(s) for variance reduction.
∙ More policy gradients: (Schulman et al., 2015)

29 / 36

𝜋

E

as,r

environment model
bandits, MDPs, POMDPs

learning target
model, value, policy

behavior policy
target policy

update rules
weighted likelihood maximization

policy optimization in the big picture

30 / 36

Model-based RL

Algorithm A general model-based RL approach
1: initialize an estimated environment model M̃
2: for t = 1, 2, . . . do
3: compute optimal policy �̃�* for M̃
4: collect experience by running the 𝜖-greedy policy �̃�*

𝜖

5: update the environment model M̃ based on collected experience

∙ �̃�*
𝜖 folows �̃�* with probability 1− 𝜖 and takes a random action otherwise.

31 / 36

Tabular model-based RL
∙ Initialization

Each R(s, a) can be initialized to the maximum possible value to
encourage exploration
M̃ can be initialized with a “pseudo-count” ns,a,s′ for each transition
(s, a, s′).

∙ Update
Reward update: compute average of rewards encountered.
Transition model update: update the transition count ns,a,s′ to include both
the pseudo-count and the actual count, then compute
T (s′|s, a) = ns,a,s′/

∑︀
s′′ ns,a,s′′ .

∙ The planning problem of computing �̃�* for M̃ can be solved using
value/Q iteration.

32 / 36

𝜋

E

as,r

environment model
bandits, MDPs, POMDPs

learning target
model, value, policy

behavior policy
𝜖-greedy

update rules
reward regression, tran-

sition density estimation

simple model-based RL in the big picture
∙ computing average reward is least squares regression
∙ frequency-based transition probability is regularized maximum likelihood estimation

33 / 36

∙ Advanced model-based RL: PlaNet (Hafner et al., 2019b), DreamerV1
(Hafner et al., 2019a), DreamerV2 (Hafner et al., 2020), DreamerV3
(Hafner et al., 2023)

∙ Model-based methods can be more sample efficient than model-free
methods.

34 / 36

Roadmap

∙ Introduction and overview
motivation, bandits, big picture

∙ Classical ideas
temporal difference methods, policy gradient, . . .

∙ Deep Reinforcement learning
neural networks, DQN, DDPG, . . .

∙ Advanced techniques
representation learning, stabilization, few-shot learning

∙ Applications
AlphaGo, AlphaTensor, . . .

35 / 36

References I

Hafner, D. et al. (2019a). Dream to control: Learning behaviors by
latent imagination. In: arXiv preprint arXiv:1912.01603.
Hafner, D. et al. (2019b). Learning latent dynamics for planning from

pixels. In: International Conference on Machine Learning. PMLR,
pp. 2555–2565.
Hafner, D. et al. (2020). Mastering Atari with Discrete World Models. In:

arXiv preprint arXiv:2010.02193.
Hafner, D. et al. (2023). Mastering diverse domains through world

models. In: arXiv preprint arXiv:2301.04104.
Schulman, J. et al. (2015). High-dimensional continuous control using

generalized advantage estimation. In: arXiv preprint arXiv:1506.02438.
Watkins, C. J. and P. Dayan (1992). Q-learning. In: Machine learning

8.3-4, pp. 279–292.
Williams, R. J. (1992). Simple statistical gradient-following algorithms

for connectionist reinforcement learning. In: Machine learning 8.3-4,
pp. 229–256.

36 / 36

	References

