Reinforcement Learning

Lecture 3 Deep Reinforcement Learning

Nan Ye

School of Mathematics and Physics The University of Queensland

Roadmap

Introduction and overview

motivation, bandits, big picture

Classical ideas

temporal difference methods, policy gradient, ...

Deep Reinforcement learning

neural networks, DQN, DDPG, ...

Advanced techniques

representation learning, stabilization, few-shot learning

Applications

AlphaGo, AlphaTensor, ...

Function Approximation

Recall: function approximation is needed to scale to large *S* and *A e.g., use parametric* Q_{θ} *instead of tabular Q in Q-learning*

deep RL: use deep neural networks (DNNs) as function approximators achieved impressive performance on many hard problems conceptually: plug DNNs in as function approximators in algorithms in practice: many tricks needed

Artificial Neural Nets (ANNs)

neural networks are highly expressive parametric functions

a neural network (linear function):

$$f(\mathbf{X};\mathbf{W}) = w_0 + w_1 x_1 + \ldots + w_d x_d$$

another one (logistic model):

$$f(\mathbf{x};\mathbf{w}) = \sigma(w_0 + w_1x_1 + \ldots + w_dx_d)$$

and RBF networks:

$$f(\mathbf{x}; \mathbf{w}) = \sum_{i=1}^{N} a_i \rho(\mathbf{x} - \mathbf{c}_i), \text{ where } \mathbf{w} = \{a_{1:N}, \mathbf{c}_{1:N}\}$$

- ANNs
 - interconnected simple computational units (neurons)
 - universal approximators
 - often trained to minimize loss
- Neurons
 - input from incoming edges, output along outgoing edges
 - computes nonlinearly transformed weighted input sum $g(\mathbf{w}^{\top}\mathbf{x})$
 - nonlinearity g known as activation/transfer function

architecture	activation	optimizer	software
MLP	threshold	SGD	PyTorch
CNN	sigmoid	AdaGrad	TensorFlow
RNN	ReLU	RMSprop	Google JAX
ResNet	ELU	AdaDelta	Keras
transformer	GELU	Adam	MXNet
		··· ↑	

often first-order methods gradients computed using automatic differentiation

Multilayer Perceptron (MLP) aka multilayer feedforward neural network

- neurons organized in layers
- forward edges only (from input neurons to output neurons)
- single-hidden layer sigmoid MLPs are universal approximators

Universal approximation property of single hidden layer neural net

$$\sum_{i=1}^{m} \alpha_i \sigma(\mathbf{w}_i \mathbf{x} + \mathbf{b}_i) + \beta_i$$

where $\sigma(u) = 1/(1 + e^{-x})$ is the sigmoid function.

 $\sin(x) \approx 10.9\sigma(-6.35x - 3.05) - 10.9\sigma(6.35x - 3.05) - 36.6\sigma(-1.3x) + 18.23, x \in [-1, 1].$

Feature Learning

https://playground.tensorflow.org/

a sigmoid unit approximately learns the concept of a circular area in 2D plane

- In deep neural networks (> 1 hidden layer), deeper layers are capable of learning higher-level features.
- This allows learning accurate models from raw features without handcrafting high-level features.

PyTorch

```
# define an MLP with 10 ReLU hidden units
net = nn.Sequential(nn.Linear(2, 10),
                    nn.ReLU().
                    nn.Linear(10, 1)
# specify the optimization algorithm
optimizer = optim.SGD(net.parameters(), lr=0.001)
# define the loss function
mse = MSELoss()
# use a dataloader for sampling mini-batches
dataloader = DataLoader(DatasetWrapper(X, y), batch_size=10, shuffle=True)
# train it
for epoch in range(nepochs):
 for i, (X_batch, y_batch) in enumerate(dataloader):
     optimizer.zero_grad()
     loss = mse(net(X_batch), y_batch)
     loss.backward()
     optimizer.step()
```

MLP regression in PyTorch

try me: https://tinyurl.com/2oxmal74

Deep Q-Networks (DQN) for Atari Games

recall ...

https://gymnasium.farama.org/environments/atari/

recall ...

Algorithm Q-learning with function approximation

- 1: Initialise the state-action value function Q_{θ}
- 2: while termination condition not met do
- 3: Execute an appropriate behavior policy to obtain a new experience (s, a, s', r)
- 4: Perform TD update

$$\theta \leftarrow \theta - \alpha(Q_{\theta}(s, a) - r - \gamma \max_{a'} Q_{\theta}(s', a')) \nabla Q_{\theta}(s, a).$$

Key ideas in DQN

- A deep CNN approximation $Q_{\theta}(s, a)$
 - state consists of the last 4 frames, and Q_{θ} is a CNN that takes in a preprocessed representation $\phi(s)$, and outputs the action probabilities.
- Experience replay
 - instead of using current observed transition to update model, use a randomly sampled minibatch from the experience memory
- Separate target Q-network
 - A separate *Q*-network Q_{θ^-} is used to compute the TD target, and Q_{θ^-} is updated to Q_{θ} after a given number of steps

A schematic illustration of a CNN for Q_{θ}

Architecture for Q_{θ} in (Mnih et al., 2015)

- Input: 84 × 84 × 4 stack of last 4 frames (after an RGB-to-gray conversion and scaling)
- 1st hidden layer: Conv(8x8, 32, S=4) + ReLU
- 2nd hidden layer: Conv(4x4, 32, S=2) + ReLU
- 3rd hidden layer: Conv(3x3, 64, S=1) + ReLU
- 4th hidden layer: FC-512 + ReLU
- output layer: softmax over actions

Algorithm DQN (Mnih et al., 2015)

Initialize replay memory D to capacity N Initialize action-value function Q with random weights θ Initialize target action-value function Q with weights $\theta^- = \theta$ for episode=1 to M do Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$. for *t* = 1 to *T* do Select a_t randomly w.p. ϵ and as $\operatorname{argmax}_a Q_{\theta}(\phi(s_t), a)$ w.p. $1 - \epsilon$ Execute a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t$, a_t , x_{t+1} and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition (ϕ_t , a_t , r_t , ϕ_{t+1}) in D Sample random minibatch of transitions $\{(\phi_i, a_i, r_i, \phi_{i+1}) : j \in J\}$ from D For $j \in J$, set $y_j = \begin{cases} r_j, & \text{if episode terminates at step } j \\ r_j + \gamma \max_{a'} Q_{\theta^-}(\phi_{j+1}, a'), & \text{otherwise.} \end{cases}$ Perform a gradient descent step on $\frac{1}{|\mathcal{A}|} \sum_{i \in \mathcal{A}} (y_i - Q_{\theta}(\phi_i, a_i))^2$ wrt θ . Set $\theta^- = \theta$ if t is a multiple of C

experience collection, incremental update

Rainbow DQN

Rainbow: Combining Improvements in Deep Reinforcement Learning

a combination of six tricks (Hessel et al., 2018)

Millions of frames

Hessel et al., Rainbow: Combining improvements in deep reinforcement learning, 2018

abled it to learn, from raw pixels, how to play many Atari

Deep Policy Optimization

many DNN-based policy optimization algorithms

- DDPG (Deep Deterministic Policy Gradient)
- TRPO (Trust Region Policy Optimization)
- PPO (Proximal Policy Optimization)

• ...

more than just plugging in DNNs into existing algorithms

DDPG

Deterministic policy gradient (DPG) theorem (Silver et al., 2014)

For a deterministic policy $\pi_{\theta}: S \to A$ where A is continuous, it holds that

$$\nabla V(\theta) = \frac{1}{1-\gamma} \mathbb{E}_{s \sim \rho_{\pi_{\theta}}} \left[\underbrace{[\nabla_{\theta} \pi_{\theta}(s)]^{\top}}_{d_{\theta} \times d_{A}} \underbrace{\nabla_{a} Q_{\pi_{\theta}}(s, a)|_{a=\mu_{\theta}(s)}}_{d_{A} \times 1} \right],$$

where $\rho_{\pi_{\theta}}(s)$ is the discounted state distribution for π_{θ} .

NB The Jacobian $\nabla_{\theta} \pi_{\theta}(s)$ has shape $d_A \times d_{\theta}$, where d_A and d_{θ} are the dimensions of A and θ .

computing deterministic policy gradient is more sample efficient that the stochastic one

people thought this is not doable before DPG

this requires computing $Q_{\pi_{\theta}}$. how? Q-learning!

Algorithm DDPG (Lillicrap et al., 2015)

1: Randomly initialize critic $Q_{\phi}(s, a)$ and actor $\pi_{\theta}(s)$ with weights ϕ and θ

- 2: Initialize target networks $Q_{\phi'}$ and $\pi_{\theta'}$ with weights $\phi' \leftarrow \phi$ and $\theta' \leftarrow \theta$
- 3: Initialize replay buffer R
- 4: for episode = 1 to M do
- 5: Initialize a random process N for action exploration
- 6: Receive initial observation state s₀
- 7: **for** t = 0 to T 1 **do**

8: Select action
$$a_t = \pi_{\theta}(s_t) + \epsilon_t$$
, where $\epsilon_t \sim N$

- 9: Execute action a_t and observe reward r_t and observe new state s_{t+1}
- 10: Store transition (s_t, a_t, r_t, s_{t+1}) in R
- 11: Sample a random minibatch of *N* transitions (s_i, a_i, r_i, s_{i+1}) from *R*
- 12: Set $y_i = r_i + \gamma Q_{\phi'}(s_{i+1}, \pi_{\theta'}(s_{i+1}))$
- 13: Update critic Q_{ϕ} by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i Q_{\phi}(s_i, a_i))^2$.
- 14: Update the actor π_{θ} using the sampled policy gradient:

$$\frac{1}{N}\sum_{i} [\nabla_{\theta} \pi_{\theta}(s_{i})]^{\top} \nabla_{a} Q_{\phi}(s_{i}, a)|_{a=\pi_{\theta}(s_{i})}$$

15: Update the target networks: $\theta' \leftarrow \tau \theta + (1 - \tau)\theta', \ \phi' \leftarrow \tau \phi + (1 - \tau)\phi'$

sample-efficient, but brittle - very sensitive to the hyperparameters

Software

CleanRL (Clean Implementation of RL Algorithms)

CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation with research-friendly features. The implementation is clean and simple, yet we can scale it to run thousands of experiments using AWS Batch. The highlight features of CleanRL are:

- Single-file implementation
 - Every detail about an algorithm variant is put into a single standalone file.
 - For example, our jpo_atari, py only has 340 lines of code but contains all implementation details on how PPO works with Atari games, so it is a great reference implementation to read for folks who do not wish to read an entire modular library.
- Benchmarked Implementation (7+ algorithms and 34+ games at https://benchmark.cleanrl.dev)
- Z Tensorboard Logging
- Local Reproducibility via Seeding
- M Videos of Gameplay Capturing
- Experiment Management with Weights and Biases
- Integration with docker and AWS

https://github.com/vwxyzjn/cleanrl

single-file implementation!

- Tianshou: https://github.com/thu-ml/tianshou
- RLlib: https://github.com/ray-project/ray/tree/master/rllib/
- Stable Baselines3: https://github.com/DLR-RM/stable-baselines3
- Spinning Up (educational): https://github.com/openai/spinningup

Roadmap

Introduction and overview

motivation, bandits, big picture

Classical ideas

temporal difference methods, policy gradient, ...

Deep Reinforcement learning

neural networks, DQN, DDPG, ...

Advanced techniques

representation learning, stabilization, few-shot learning

Applications

AlphaGo, AlphaTensor, ...

References I

- Hessel, M. et al. (2018). Rainbow: Combining improvements in deep reinforcement learning. In: *Thirty-second AAAI conference on artificial intelligence*.
- Lillicrap, T. P. et al. (2015). Continuous control with deep reinforcement learning. In: *arXiv preprint arXiv:1509.02971*.
- Mnih, V. et al. (2015). Human-level control through deep reinforcement learning. In: *Nature* 518.7540, pp. 529–533.
- Schulman, J. et al. (2015). Trust region policy optimization. In: Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp. 1889–1897.
- Schulman, J. et al. (2017). Proximal Policy Optimization Algorithms. In: *arXiv preprint arXiv:1707.06347*.
- Silver, D. et al. (2014). Deterministic policy gradient algorithms. In: *ICML*.