
Reinforcement Learning

Lecture 3 Deep Reinforcement Learning

Nan Ye

School of Mathematics and Physics
The University of Queensland

Roadmap

∙ Introduction and overview
motivation, bandits, big picture

∙ Classical ideas
temporal difference methods, policy gradient, . . .

∙ Deep Reinforcement learning
neural networks, DQN, DDPG, . . .

∙ Advanced techniques
representation learning, stabilization, few-shot learning

∙ Applications
AlphaGo, AlphaTensor, . . .

1 / 22

Function Approximation

Recall: function approximation is needed to scale to large S and A
e.g., use parametric Q𝜃 instead of tabular Q in Q-learning

deep RL: use deep neural networks (DNNs) as function approximators
achieved impressive performance on many hard problems

conceptually: plug DNNs in as function approximators in algorithms

in practice: many tricks needed

2 / 22

Artificial Neural Nets (ANNs)

neural networks are highly expressive parametric functions

a neural network (linear function):

f (x;w) = w0 + w1x1 + . . .+ wdxd

another one (logistic model):

f (x;w) = 𝜎(w0 + w1x1 + . . .+ wdxd)

and RBF networks:

f (x;w) =
N∑︁

i=1

ai𝜌(x − ci), where w = {a1:N ,c1:N}

3 / 22

ANN

x0 = 1

x1

x2

...

xd

Σ

w1

w2

wd

w0

g(x⊤w)

artificial neuron

∙ ANNs
interconnected simple computational units (neurons)
universal approximators
often trained to minimize loss

∙ Neurons
input from incoming edges, output along outgoing edges
computes nonlinearly transformed weighted input sum g(w⊤x)
nonlinearity g known as activation/transfer function

4 / 22

architecture activation optimizer software

MLP
CNN
RNN

ResNet
transformer

. . .

threshold
sigmoid
ReLU
ELU

GELU
. . .

SGD
AdaGrad
RMSprop
AdaDelta

Adam
. . .

often first-order methods
gradients computed using automatic differentiation

PyTorch
TensorFlow
Google JAX

Keras
MXNet

. . .

5 / 22

Multilayer Perceptron (MLP)
aka multilayer feedforward neural network

input
layer

hidden
layer

hidden
layer

output
layer

∙ neurons organized in layers
∙ forward edges only (from input neurons to output neurons)
∙ single-hidden layer sigmoid MLPs are universal approximators

6 / 22

Universal approximation property of single hidden layer neural net

m∑︁
i=1

𝛼i𝜎(wix + bi) + 𝛽,

where 𝜎(u) = 1/(1 + e−x) is the sigmoid function.

x2 ≈ 2.2𝜎(−3.15x − 3) + 2.2𝜎(3.15x − 3) − 0.205, x ∈ [−1, 1].

sin(x) ≈ 10.9𝜎(−6.35x − 3.05) − 10.9𝜎(6.35x − 3.05) − 36.6𝜎(−1.3x) + 18.23, x ∈ [−1, 1].

7 / 22

Feature Learning

https://playground.tensorflow.org/

a sigmoid unit approximately learns the concept of a circular area in 2D plane

∙ In deep neural networks (> 1 hidden layer), deeper layers are capable
of learning higher-level features.

∙ This allows learning accurate models from raw features without
handcrafting high-level features.

8 / 22

https://playground.tensorflow.org/

PyTorch
define an MLP with 10 ReLU hidden units

net = nn.Sequential(nn.Linear(2, 10),

nn.ReLU(),

nn.Linear(10, 1))

specify the optimization algorithm

optimizer = optim.SGD(net.parameters(), lr=0.001)

define the loss function

mse = MSELoss()

use a dataloader for sampling mini-batches

dataloader = DataLoader(DatasetWrapper(X, y), batch_size=10, shuffle=True)

train it

for epoch in range(nepochs):

for i, (X_batch, y_batch) in enumerate(dataloader):

optimizer.zero_grad()

loss = mse(net(X_batch), y_batch)

loss.backward()

optimizer.step()

MLP regression in PyTorch

try me: https://tinyurl.com/2oxmal74

9 / 22

https://tinyurl.com/2oxmal74

Deep Q-Networks (DQN) for Atari

Games

recall...

Atari
https://gymnasium.farama.org/environments/atari/

10 / 22

https://gymnasium.farama.org/environments/atari/

recall...

Algorithm Q-learning with function approximation
1: Initialise the state-action value function Q𝜃

2: while termination condition not met do
3: Execute an appropriate behavior policy to obtain a new experience (s, a, s′, r)
4: Perform TD update

𝜃 ← 𝜃 − 𝛼(Q𝜃(s, a)− r − 𝛾max
a′

Q𝜃(s′, a′))∇Q𝜃(s, a).

11 / 22

Key ideas in DQN
∙ A deep CNN approximation Q𝜃(s,a)

state consists of the last 4 frames, and Q𝜃 is a CNN that takes in a
preprocessed representation 𝜑(s), and outputs the action probabilities.

∙ Experience replay
instead of using current observed transition to update model, use a
randomly sampled minibatch from the experience memory

∙ Separate target Q-network
A separate Q-network Q𝜃− is used to compute the TD target, and Q𝜃− is
updated to Q𝜃 after a given number of steps

Mnih et al., Human-level control through deep reinforcement learning, 2015

12 / 22

A schematic illustration of a CNN for Q𝜃

Architecture for Q𝜃 in (Mnih et al., 2015)
∙ Input: 84 × 84 × 4 stack of last 4 frames (after an RGB-to-gray conversion and scaling)
∙ 1st hidden layer: Conv(8x8, 32, S=4) + ReLU
∙ 2nd hidden layer: Conv(4x4, 32, S=2) + ReLU
∙ 3rd hidden layer: Conv(3x3, 64, S=1) + ReLU
∙ 4th hidden layer: FC-512 + ReLU
∙ output layer: softmax over actions

13 / 22

Algorithm DQN (Mnih et al., 2015)
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 𝜃
Initialize target action-value function Q with weights 𝜃− = 𝜃
for episode=1 to M do

Initialize sequence s1 = {x1} and preprocessed sequence 𝜑1 = 𝜑(s1).
for t = 1 to T do

Select at randomly w.p. 𝜖 and as argmaxa Q𝜃(𝜑(st), a) w.p. 1− 𝜖
Execute at in emulator and observe reward rt and image xt+1

Set st+1 = st , at , xt+1 and preprocess 𝜑t+1 = 𝜑(st+1)
Store transition (𝜑t , at , rt , 𝜑t+1) in D
Sample random minibatch of transitions {(𝜑j , aj , rj , 𝜑j+1) : j ∈ J} from D

For j ∈ J, set yj =

{︃
rj , if episode terminates at step j + 1,
rj + 𝛾maxa′ Q𝜃−(𝜑j+1, a′), otherwise.

.

Perform a gradient descent step on 1
|J|

∑︀
j∈J(yj −Q𝜃(𝜑j , aj))

2 wrt 𝜃.
Set 𝜃− = 𝜃 if t is a multiple of C

experience collection, incremental update

14 / 22

Rainbow DQN

a combination of six tricks (Hessel et al., 2018)
Hessel et al., Rainbow: Combining improvements in deep reinforcement learning, 2018

15 / 22

Deep Policy Optimization

many DNN-based policy optimization algorithms

∙ DDPG (Deep Deterministic Policy Gradient)
∙ TRPO (Trust Region Policy Optimization)
∙ PPO (Proximal Policy Optimization)
∙ . . .

more than just plugging in DNNs into existing algorithms

16 / 22

DDPG

Deterministic policy gradient (DPG) theorem (Silver et al., 2014)

For a deterministic policy 𝜋𝜃 : S → A where A is continuous, it holds that

∇V (𝜃) =
1

1 − 𝛾
Es∼𝜌𝜋𝜃

⎡⎢⎣[∇𝜃 𝜋𝜃(s)]⊤⏟ ⏞
d𝜃×dA

∇a Q𝜋𝜃
(s,a)|a=𝜇𝜃(s)⏟ ⏞
dA×1

⎤⎥⎦ ,

where 𝜌𝜋𝜃
(s) is the discounted state distribution for 𝜋𝜃.

NB The Jacobian ∇𝜃 𝜋𝜃(s) has shape dA × d𝜃 , where dA and d𝜃 are the dimensions of A and 𝜃.

computing deterministic policy gradient is more sample efficient that the stochastic one
∙ people thought this is not doable before DPG

this requires computing Q𝜋𝜃 . how? Q-learning!

Silver et al., Deterministic policy gradient algorithms, 2014

17 / 22

Algorithm DDPG (Lillicrap et al., 2015)
1: Randomly initialize critic Q𝜑(s, a) and actor 𝜋𝜃(s) with weights 𝜑 and 𝜃
2: Initialize target networks Q𝜑′ and 𝜋𝜃′ with weights 𝜑′ ← 𝜑 and 𝜃′ ← 𝜃
3: Initialize replay buffer R
4: for episode = 1 to M do
5: Initialize a random process N for action exploration
6: Receive initial observation state s0

7: for t = 0 to T − 1 do
8: Select action at = 𝜋𝜃(st) + 𝜖t , where 𝜖t ∼ N
9: Execute action at and observe reward rt and observe new state st+1

10: Store transition (st , at , rt , st+1) in R
11: Sample a random minibatch of N transitions (si , ai , ri , si+1) from R
12: Set yi = ri + 𝛾Q𝜑′(si+1, 𝜋𝜃′(si+1))
13: Update critic Q𝜑 by minimizing the loss: L = 1

N

∑︀
i(yi −Q𝜑(si , ai))

2.
14: Update the actor 𝜋𝜃 using the sampled policy gradient:

1
N

∑︁
i

[∇𝜃 𝜋𝜃(si)]
⊤∇a Q𝜑(si , a)|a=𝜋𝜃(si)

15: Update the target networks: 𝜃′ ← 𝜏𝜃 + (1− 𝜏)𝜃′, 𝜑′ ← 𝜏𝜑+ (1− 𝜏)𝜑′

sample-efficient, but brittle – very sensitive to the hyperparameters

Lillicrap et al., Continuous control with deep reinforcement learning, 2015

18 / 22

Software

https://github.com/vwxyzjn/cleanrl

single-file implementation!

19 / 22

https://github.com/vwxyzjn/cleanrl

∙ Tianshou: https://github.com/thu-ml/tianshou
∙ RLlib: https://github.com/ray-project/ray/tree/master/rllib/
∙ Stable Baselines3: https://github.com/DLR-RM/stable-baselines3
∙ Spinning Up (educational): https://github.com/openai/spinningup

20 / 22

https://github.com/thu-ml/tianshou
https://github.com/ray-project/ray/tree/master/rllib/
https://github.com/DLR-RM/stable-baselines3
https://github.com/openai/spinningup

Roadmap

∙ Introduction and overview
motivation, bandits, big picture

∙ Classical ideas
temporal difference methods, policy gradient, . . .

∙ Deep Reinforcement learning
neural networks, DQN, DDPG, . . .

∙ Advanced techniques
representation learning, stabilization, few-shot learning

∙ Applications
AlphaGo, AlphaTensor, . . .

21 / 22

References I

Hessel, M. et al. (2018). Rainbow: Combining improvements in deep
reinforcement learning. In: Thirty-second AAAI conference on artificial
intelligence.
Lillicrap, T. P. et al. (2015). Continuous control with deep reinforcement

learning. In: arXiv preprint arXiv:1509.02971.
Mnih, V. et al. (2015). Human-level control through deep reinforcement

learning. In: Nature 518.7540, pp. 529–533.
Schulman, J. et al. (2015). Trust region policy optimization. In:

Proceedings of the 32nd International Conference on Machine Learning
(ICML-15), pp. 1889–1897.
Schulman, J. et al. (2017). Proximal Policy Optimization Algorithms. In:

arXiv preprint arXiv:1707.06347.
Silver, D. et al. (2014). Deterministic policy gradient algorithms. In:

ICML.

22 / 22

	References

