Reinforcement Learning

Lecture 3 Deep Reinforcement Learning

Nan Ye

School of Mathematics and Physics
The University of Queensland

THE UNIVERSITY
OF QUEENSLAND

AUSTRALIA

Roadmap

Introduction and overview

motivation, bandits, big picture
Classical ideas

temporal difference methods, policy gradient, . ..
Deep Reinforcement learning

neural networks, DQN, DDPG, ...
Advanced techniques

representation learning, stabilization, few-shot learning
Applications

AlphaGo, AlphaTensor, . ..

1/22

Function Approximation

Recall: function approximation is needed to scale to large S and A

e.g., use parametric Qq instead of tabular Q in Q-learning

deep RL: use deep neural networks (DNNs) as function approximators
achieved impressive performance on many hard problems
conceptually: plug DNNs in as function approximators in algorithms

in practice: many tricks needed

2/22

Artificial Neural Nets (ANNs)

neural networks are highly expressive parametric functions

a neural network (linear function):

f(X; W) = wo + Wixy + ...+ WgXg

another one (logistic model):

f(x; W) = o(Wo + Wixy + ... + WyXy)

and RBF networks:

N
fx;w) =Y ap(x —¢;), wherew = {ayy,Cr.n}
i=1

3/22

artificial neuron

e ANNs
m interconnected simple computational units (neurons)
m universal approximators
m often trained to minimize loss
¢ Neurons
m input from incoming edges, output along outgoing edges
m computes nonlinearly transformed weighted input sum g(w ' x)
m nonlinearity g known as activation/transfer function

4/22

architecture activation optimizer software

MLP threshold SGD PyTorch
CNN sigmoid AdaGrad TensorFlow
RNN RelLU RMSprop Google JAX
ResNet ELU AdaDelta Keras
transformer GELU Adam MXNet
T

often first-order methods
gradients computed using automatic differentiation

5/22

Multilayer Perceptron (MLP)

aka multilayer feedforward neural network

input hidden hidden output
layer layer layer layer

(d—o()
A NSOA

STV DN W
Wt L5 0 B >
&R 4'0’“}(6’,“’","0}’» %

KT N Y 4
ORISR

1A QL
KRN Xt

(”V% ."‘x'%

e, oY)

g7 X 74 X X DRy

TR
<N

® neurons organized in layers

e forward edges only (from input neurons to output neurons)

¢ single-hidden layer sigmoid MLPs are universal approximators

6/22

Universal approximation property of single hidden layer neural net

m
ZO&,‘O(W/X + b/) + B,

i=1

where o(u) = 1/(1 + e X) is the sigmoid function.

— x? NN (2 hidden units) — sin(2nx) NN (3 hidden units)
1.0 1 \ / 1.0 4 //\ \\
0.8 / f \ / \
\ f{ 054 | | \
0.6 / \ / \
\ g 0.0 4 1 \
0.4 4 \ | \ /
/ \
\ / ' =051 \
0.2 \ /
0.0 — -1.0 \/
T T T T T T T T T T
-1.0 -0.5 0.0 0.5 10 -1.0 -0.5 0.0 0.5 10

x? ~ 2.20(—8.15x — 3) + 2.20(3.15x — 3) — 0.205, x € [—1,1].

sin(x) =~ 10.90(—6.35x — 3.05) — 10.90(6.35x — 3.05) — 36.60(—1.3x) + 18.23, x € [—1,1].

7122

Feature Learning

+ — 1 HIDDEN LAYER OUTPUT

Test loss 0.006
@ Training loss 0.002

FEATURES

o

https://playground.tensorflow.org/
a sigmoid unit approximately learns the concept of a circular area in 2D plane

¢ |n deep neural networks (> 1 hidden layer), deeper layers are capable
of learning higher-level features.

¢ This allows learning accurate models from raw features without
handcrafting high-level features.

8/22

https://playground.tensorflow.org/

PyTorch

define an MLP with 10 ReLU hidden units
net = nn.Sequential(nn.Linear(2, 10),
nn.RelLU(),
nn.Linear (10, 1))
specify the optimization algorithm
optimizer = optim.SGD(net.parameters(), 1r=0.001)
define the loss function
mse = MSELoss()
use a dataloader for sampling mini-batches
dataloader = DatalLoader(DatasetWrapper(X, y), batch_size=10, shuffle=True)
train it
for epoch in range(nepochs):
for i, (X_batch, y_batch) in enumerate(dataloader):
optimizer.zero_grad()
loss = mse(net(X_batch), y_batch)
loss.backward()
optimizer.step()

MLP regression in PyTorch
try me: https://tinyurl.com/20xmal74

9/22

https://tinyurl.com/2oxmal74

Deep Q-Networks (DQN) for Atari
Games

Adventure Alien

recall...

Atari

https://gymnasium.farama.org/environments/atari/

10/22

https://gymnasium.farama.org/environments/atari/

recall...

Algorithm Q-learning with function approximation

. Initialise the state-action value function Qy
- while termination condition not met do

1
2
3: Execute an appropriate behavior policy to obtain a new experience (s, a, s', r)
4 Perform TD update

00— a(Qu(s,a) —r—ymaxQu(s',d)) V Qu(s, a).

11/22

Key ideas in DQN
¢ A deep CNN approximation Qy(s, a)

m state consists of the last 4 frames, and @ is a CNN that takes in a
preprocessed representation ¢(s), and outputs the action probabilities.

e Experience replay

m instead of using current observed transition to update model, use a
randomly sampled minibatch from the experience memory

® Separate target Q-network

m A separate Q-network Q,- is used to compute the TD target, and Q- is
updated to Qy after a given number of steps

Mnih et al., Human-level control through deep reinforcement learning, 2015

12/22

Convolution Convolution Fully connected Fully cgnnected

A schematic illustration of a CNN for Qp

Architecture for Qy in (Mnih et al., 2015)

Input: 84 x 84 x 4 stack of last 4 frames (after an RGB-to-gray conversion and scaling)
1st hidden layer: Conv(8x8, 32, S=4) + ReLU

2nd hidden layer: Conv(4x4, 32, S=2) + ReLU

3rd hidden layer: Conv(3x3, 64, S=1) + ReLU

4th hidden layer: FC-512 + ReLU

output layer: softmax over actions

13/22

Algorithm DQN (Mnih et al., 2015)

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 6
Initialize target action-value function Q with weights 6= = 6
for episode=1to M do
Initialize sequence s; = {xi} and preprocessed sequence ¢ = ¢(s1).
fort=1t0 T do
Select a; randomly w.p. € and as argmax, Qo (¢(5t), @) w.p. 1 —¢
Execute a; in emulator and observe reward r; and image X1
Set S11 = St, ar, Xe+1 and preprocess o1 = ¢(Se1)
Store transition (¢, at, 1, ¢r+1) in D
Sample random minibatch of transitions {(¢;, g, 1, ¢j+1) : j € J} from D

Forj € J, sety, = {r,-, if episode terminates at step j

i+ ymaxy Q- (dj11,a), otherwise.
Perform a gradient descent step on ‘17‘ icsVi — Qo) aj))? wrt 6.
Set 0~ =0 if tis a multiple of C

experience collection, incremental update

14/22

Rainbow DQN

Rainbow: Combining Improvements in Deep Reinforcement Learning

Matteo Hessel Joseph Modayil Hado van Hasselt

DeepMind DeepMind DeepMind

Will Dabney Dan Horgan Bilal Piot

DeepMind DeepMind DeepMind
Abstract

The deep reinforcement learning community has made sev-
eral independent improvements to the DQN algorithm. How-
ever, it is unclear which of these extensions are complemen-
tary and can be fruitfully combined. This paper examines
six extensions to the DQN algorithm and empirically studies
their combination. Our experiments show that the comb
tion provides state-of-the-art performance on the Atari 2600
hmark. both in terms of data efficiency and final perfor-
nee. We also provide results from a detailed ablation study
that shows the contribution of cach component to overall per-
formance.

Introduction

The many recent successes in scaling reinforcement learn-
ing (RL) to complex sequential decision-making problems
were kick-started by the Deep Q-Nerworks algorithm (DQN:
Mnih et al. 2013, 2015). Its combination of Q-learning wi
convolutional neural networks and experience replay e
abled it to learn. from raw pixels. how to plav manv Atari

Median human-normalized score

200%

100%

Tom Schaul Georg Ostrovski
DeepMind DeepMind
Mohammad Azar David Silver
DeepMind DeepMind
DON
DOGN
Frioritized DDON
Dueling DOON
A3C v
Distributional DQN h,
Noisy DON
Rainbow

Tho

Millinns of frames

a combination of six tricks (Hessel et al., 2018)

Hessel et al., Rainbow: Combining improvements in deep reinforcement learning, 2018

15/22

Deep Policy Optimization

many DNN-based policy optimization algorithms

e DDPG (Deep Deterministic Policy Gradient)
e TRPO (Trust Region Policy Optimization)

¢ PPO (Proximal Policy Optimization)

° .

more than just plugging in DNNSs into existing algorithms

16/22

DDPG

Deterministic policy gradient (DPG) theorem (Silver et al., 2014)
For a deterministic policy my : S — A where A is continuous, it holds that

’
vV V(o) = e Esvpry | [Vomo(8)]T VaQry(S, @)|azpo(s) | »

do x da dax1

where p.,(8) is the discounted state distribution for 7.

NB The Jacobian V4 7y (s) has shape da x dp, where da and dy are the dimensions of A and 6.

computing deterministic policy gradient is more sample efficient that the stochastic one
® people thought this is not doable before DPG

this requires computing Qr,. how? Q-learning!

Silver et al., Deterministic policy gradient algorithms, 2014

17/22

Algorithm DDPG (Lillicrap et al., 2015)

1: Randomly initialize critic Q, (s, @) and actor 7y (s) with weights ¢ and 6
2: Initialize target networks Qg and myr with weights ¢’ < ¢ and 6’ < 0
3: Initialize replay buffer R

4: for episode = 1to M do

5 Initialize a random process N for action exploration

6 Receive initial observation state sg

7: fort=0to T —1do

8: Select action a; = 7o(St) + €, where e; ~ N

9: Execute action a; and observe reward r; and observe new state s;.1
10: Store transition (s;, ar, 11, St+1) in R
11: Sample a random minibatch of N transitions (s;, a;, i, Si+1) from R
12: Set y; = ri +vQy (Siv1, Tor (Si11))
13: Update critic Q, by minimizing the loss: L= & 3°,(yi — Qu(si, a1))2.
14: Update the actor 7y using the sampled policy gradient:

|
N S Voma(s)]T Va Qo(Si, @)lazr(s)

15: Update the target networks: ¢’ «— 70 + (1 — 7)¢', ¢' < 76+ (1 — 7)¢’

sample-efficient, but brittle — very sensitive to the hyperparameters

Lillicrap et al., Continuous control with deep reinforcement learning, 2015

18/22

Software

CleanRL (Clean Implementation of RL Algorithms)

[@viodeis ERFIEEES CO Open in Colab

CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation with
research-friendly features. The implementation is clean and simple, yet we can scale it to run thousands of
experiments using AWS Batch. The highlight features of CleanRL are:

12k

« [Single-file implementation

o Every detail about an algorithm variant is put inta a single standalone file.

o For example, our ppo_atari.py only has 340 lines of code but contains all implementation details on
how PPO works with Atari games, so it is a great reference implementation to read for folks who do not
wish to read an entire modular library.

» il Benchmarked Implementation (7+ algorithms and 34+ games at https://benchmark.cleanrl.dev)
» / Tensorboard Logging

. \ Local Reproducibility via Seeding

= P8 Videos of Gameplay Capturing

» &= Experiment Management with Weights and Biases

* & Cloud Integration with docker and AWS

https://github.com/vwxyzjn/cleanrl
single-file implementation!

19/22

https://github.com/vwxyzjn/cleanrl

Tianshou: https://github.com/thu-ml/tianshou

RLlib: https://github.com/ray-project/ray/tree/master/rllib/
Stable Baselines3: https://github.com/DLR-RM/stable-baselines3
Spinning Up (educational): https://github.com/openai/spinningup

20/22

https://github.com/thu-ml/tianshou
https://github.com/ray-project/ray/tree/master/rllib/
https://github.com/DLR-RM/stable-baselines3
https://github.com/openai/spinningup

Roadmap

Introduction and overview

motivation, bandits, big picture
Classical ideas

temporal difference methods, policy gradient, . ..
Deep Reinforcement learning

neural networks, DQN, DDPG, ...
Advanced techniques

representation learning, stabilization, few-shot learning
Applications

AlphaGo, AlphaTensor, . ..

21/22

References 1

ﬁ Hessel, M. et al. (2018). Rainbow: Combining improvements in deep
reinforcement learning. In: Thirty-second AAAI conference on artificial
intelligence.

[3 Lillicrap, T. P. et al. (2015). Continuous control with deep reinforcement
learning. In: arXiv preprint arXiv:1509.02971.

[§ Mnih, V. et al. (2015). Human-level control through deep reinforcement
learning. In: Nature 518.7540, pp. 529-533.

[§ Schulman, J. et al. (2015). Trust region policy optimization. In:
Proceedings of the 32nd International Conference on Machine Learning
(ICML-15), pp. 1889-1897.

[§ Schulman, J. et al. (2017). Proximal Policy Optimization Algorithms. In:
arXiv preprint arXiv:1707.06347.

[3 Silver, D. et al. (2014). Deterministic policy gradient algorithms. In:
ICML.

22/22

	References

