Reinforcement Learning

Lecture 3 Deep Reinforcement Learning

Nan Ye

School of Mathematics and Physics The University of Queensland

Roadmap

∙ Introduction and overview

motivation, bandits, big picture

∙ Classical ideas

temporal difference methods, policy gradient, . . .

∙ Deep Reinforcement learning

neural networks, DQN, DDPG, . . .

∙ Advanced techniques

representation learning, stabilization, few-shot learning

∙ Applications

AlphaGo, AlphaTensor, . . .

Function Approximation

Recall: function approximation is needed to scale to large *S* and *A e.g., use parametric Q_e instead of tabular Q in Q-learning*

deep RL: use deep neural networks (DNNs) as function approximators *achieved impressive performance on many hard problems conceptually: plug DNNs in as function approximators in algorithms in practice: many tricks needed*

Artificial Neural Nets (ANNs)

neural networks are highly expressive parametric functions

a neural network (linear function):

$$
f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_d x_d
$$

another one (logistic model):

$$
f(\mathbf{x}; \mathbf{w}) = \sigma(w_0 + w_1x_1 + \ldots + w_dx_d)
$$

and RBF networks:

$$
f(\mathbf{x}; \mathbf{w}) = \sum_{i=1}^{N} a_i \rho(\mathbf{x} - \mathbf{c}_i), \quad \text{where } \mathbf{w} = \{a_{1:N}, \mathbf{c}_{1:N}\}
$$

∙ ANNs

- **n** interconnected simple computational units (neurons)
- universal approximators
- often trained to minimize loss
- ∙ Neurons
	- \blacksquare input from incoming edges, output along outgoing edges
	- computes nonlinearly transformed weighted input sum *g*(**w** [⊤]**x**)
	- nonlinearity *g* known as activation/transfer function

often first-order methods gradients computed using automatic differentiation

Multilayer Perceptron (MLP) aka multilayer feedforward neural network

- ∙ neurons organized in layers
- ∙ forward edges only (from input neurons to output neurons)
- ∙ single-hidden layer sigmoid MLPs are universal approximators

Universal approximation property of single hidden layer neural net

$$
\sum_{i=1}^m \alpha_i \sigma(\mathbf{w}_i \mathbf{x} + \mathbf{b}_i) + \beta,
$$

where $\sigma(u) = 1/(1 + e^{-x})$ *is the sigmoid function.*

 $\sin(x) \approx 10.9\sigma(-6.35x - 3.05) - 10.9\sigma(6.35x - 3.05) - 36.6\sigma(-1.3x) + 18.23, x \in [-1, 1].$

Feature Learning

<https://playground.tensorflow.org/>

a sigmoid unit approximately learns the concept of a circular area in 2D plane

- ∙ In deep neural networks (> 1 hidden layer), deeper layers are capable of learning higher-level features.
- ∙ This allows learning accurate models from raw features without handcrafting high-level features.

PyTorch

```
# define an MLP with 10 ReLU hidden units
net = nn.Sequential(nn.Linear(2, 10),
                    nn.ReLU(),
                    nn.Linear(10, 1))
# specify the optimization algorithm
optimizer = optim.SGD(net.parameters(), lr=0.001)
# define the loss function
mse = MSELoss()# use a dataloader for sampling mini-batches
dataloader = DataLoader(DatasetWrapper(X, y), batch_size=10, shuffle=True)
# train it
for epoch in range(nepochs):
 for i, (X_batch, y_batch) in enumerate(dataloader):
     optimizer.zero_grad()
     loss = mse(net(X_batch), y_batch)loss.backward()
     optimizer.step()
```
MLP regression in PyTorch

try me: <https://tinyurl.com/2oxmal74>

Deep Q-Networks (DQN) for Atari Games

Alien

Asterix

recall...

<https://gymnasium.farama.org/environments/atari/>

recall...

Algorithm Q-learning with function approximation

- 1: Initialise the state-action value function *Q*
- 2: **while** termination condition not met **do**
- 3: Execute an appropriate behavior policy to obtain a new experience (s, a, s', r)
- 4: Perform TD update

$$
\theta \leftarrow \theta - \alpha(Q_{\theta}(\mathbf{s}, \mathbf{a}) - r - \gamma \max_{\mathbf{a}'} Q_{\theta}(\mathbf{s}', \mathbf{a}')) \nabla Q_{\theta}(\mathbf{s}, \mathbf{a}).
$$

Key ideas in DQN

- A deep CNN approximation $Q_{\theta}(s, a)$
	- **state consists of the last 4 frames, and** Q_θ **is a CNN that takes in a** preprocessed representation $\phi(s)$, and outputs the action probabilities.
- ∙ Experience replay
	- \blacksquare instead of using current observed transition to update model, use a randomly sampled minibatch from the experience memory
- ∙ Separate target *Q*-network
	- A separate *Q*-network *Q*[−] is used to compute the TD target, and *Q*[−] is updated to Q_{θ} after a given number of steps

A schematic illustration of a CNN for *Q*

Architecture for Q_θ in (Mnih et al., [2015\)](#page-22-0)

- Input: $84 \times 84 \times 4$ stack of last 4 frames (after an RGB-to-gray conversion and scaling)
- ∙ 1st hidden layer: Conv(8x8, 32, S=4) + ReLU
- ∙ 2nd hidden layer: Conv(4x4, 32, S=2) + ReLU
- ∙ 3rd hidden layer: Conv(3x3, 64, S=1) + ReLU
- ∙ 4th hidden layer: FC-512 + ReLU
- ∙ output layer: softmax over actions

Algorithm DQN (Mnih et al., [2015\)](#page-22-0)

Initialize replay memory *D* to capacity *N* Initialize action-value function Q with random weights θ Initialize target action-value function Q with weights $\theta^- = \theta$ **for** episode=1 to *M* **do** Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$. **for** $t = 1$ to T **do** Select a_t randomly w.p. ϵ and as argmax_a $Q_\theta(\phi(s_t), a)$ w.p. 1 – ϵ Execute a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in *D* Sample random minibatch of transitions $\{(\phi_i, a_i, r_i, \phi_{i+1}) : j \in J\}$ from *D* $\mathsf{For}\,j\in\mathsf{J}, \mathsf{set}\, y_j=$ $\int r_j$, if episode terminates at step *j* + $r_j + \gamma \max_{a'} Q_{\theta}$ – (ϕ_{j+1}, a') , otherwise. Perform a gradient descent step on $\frac{1}{|J|}\sum_{j\in J}(y_j - Q_\theta(\phi_j, a_j))^2$ wrt θ . Set $\theta^- = \theta$ if *t* is a multiple of *C*

experience collection, incremental update

Rainbow DQN

Rainbow: Combining Improvements in Deep Reinforcement Learning

a combination of six tricks (Hessel et al., [2018\)](#page-22-1)

Hessel et al., Rainbow: Combining improvements in deep reinforcement learning, 2018

Deep Policy Optimization

many DNN-based policy optimization algorithms

- ∙ DDPG (Deep Deterministic Policy Gradient)
- ∙ TRPO (Trust Region Policy Optimization)
- ∙ PPO (Proximal Policy Optimization)

∙ . . .

more than just plugging in DNNs into existing algorithms

DDPG

Deterministic policy gradient (DPG) theorem (Silver et al., [2014\)](#page-22-2)

For a deterministic policy $\pi_{\theta}: S \rightarrow A$ where A is continuous, it holds that

$$
\nabla \ V(\theta) = \frac{1}{1-\gamma} \ \mathbb{E}_{s \sim \rho_{\pi_{\theta}}} \left[\underbrace{\left[\nabla_{\theta} \ \pi_{\theta}(s) \right]^{\top} \nabla_{a} \ Q_{\pi_{\theta}}(s, a) \vert_{a=\mu_{\theta}(s)}}_{d_{A} \times 1} \right],
$$

where $\rho_{\pi_{\theta}}(\bm{s})$ is the discounted state distribution for $\pi_{\theta}.$

NB The Jacobian $\nabla_{\theta} \pi_{\theta}(s)$ has shape $d_A \times d_{\theta}$, where d_A and d_{θ} are the dimensions of A and θ .

computing deterministic policy gradient is more sample efficient that the stochastic one

∙ *people thought this is not doable before DPG*

this requires computing $\mathit{Q}_{\pi_\theta}.$ how? Q-learning!

Algorithm DDPG (Lillicrap et al., [2015\)](#page-22-3)

1: Randomly initialize critic $Q_{\phi}(s, a)$ and actor $\pi_{\theta}(s)$ with weights ϕ and θ

- 2: Initialize target networks $\pmb{Q}_{\phi'}$ and $\pi_{\theta'}$ with weights $\phi' \leftarrow \phi$ and $\theta' \leftarrow \theta$
- 3: Initialize replay buffer *R*
- 4: **for** episode = 1 to *M* **do**
- 5: Initialize a random process *N* for action exploration
6: Receive initial observation state s_o
- 6: Receive initial observation state *s*⁰

7: **for**
$$
t = 0
$$
 to $T - 1$ **do**

8: Select action
$$
a_t = \pi_\theta(s_t) + \epsilon_t
$$
, where $\epsilon_t \sim N$

- 9: Execute action a_t and observe reward r_t and observe new state s_{t+1}
- 10: Store transition (*st*, *at*, *rt*, *st*+1) in *R*
- 11: Sample a random minibatch of *N* transitions (s_i, a_i, r_i, s_{i+1}) from *R*
12: Set $w = r_i + \gamma Q_u(s_{i+1}, r_u(s_{i+1}))$
- Set $y_i = r_i + \gamma Q_{\phi'}(s_{i+1}, \pi_{\theta'}(s_{i+1}))$
- 13: Update critic Q_{ϕ} by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i Q_{\phi}(s_i, a_i))^2$.
- 14: Update the actor π_{θ} using the sampled policy gradient:

$$
\frac{1}{N} \sum_i [\nabla_\theta\, \pi_\theta(\boldsymbol{s}_i)]^\top \, \nabla_{\boldsymbol{a}} \, \mathit{Q}_{\phi}(\boldsymbol{s}_i,\boldsymbol{a})|_{\boldsymbol{a}=\pi_\theta(\boldsymbol{s}_i)}
$$

15: Update the target networks: $\theta' \leftarrow \tau \theta + (1 - \tau) \theta', \phi' \leftarrow \tau \phi + (1 - \tau) \phi'$

sample-efficient, but brittle – very sensitive to the hyperparameters

Software

CleanRL (Clean Implementation of RL Algorithms)

CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation with research-friendly features. The implementation is clean and simple, yet we can scale it to run thousands of experiments using AWS Batch. The highlight features of CleanRL are:

- Single-file implementation
	- · Every detail about an algorithm variant is put into a single standalone file.
	- o For example, our ppo atari, py only has 340 lines of code but contains all implementation details on how PPO works with Atari games, so it is a great reference implementation to read for folks who do not wish to read an entire modular library.
- Benchmarked Implementation (7+ algorithms and 34+ games at https://benchmark.cleanrl.dev)
- / Tensorboard Logging
- Local Reproducibility via Seeding
- M Videos of Gameplay Capturing
- . Experiment Management with Weights and Biases
- Cloud Integration with docker and AWS

<https://github.com/vwxyzjn/cleanrl>

single-file implementation!

- ∙ Tianshou: <https://github.com/thu-ml/tianshou>
- ∙ RLlib: <https://github.com/ray-project/ray/tree/master/rllib/>
- ∙ Stable Baselines3: <https://github.com/DLR-RM/stable-baselines3>
- ∙ Spinning Up (educational): <https://github.com/openai/spinningup>

Roadmap

∙ Introduction and overview

motivation, bandits, big picture

∙ Classical ideas

temporal difference methods, policy gradient, . . .

∙ Deep Reinforcement learning

neural networks, DQN, DDPG, . . .

∙ Advanced techniques

representation learning, stabilization, few-shot learning

∙ Applications

AlphaGo, AlphaTensor, . . .

References I

- \blacksquare Hessel, M. et al. (2018). Rainbow: Combining improvements in deep reinforcement learning. In: *Thirty-second AAAI conference on artificial intelligence*.
- \blacksquare Lillicrap, T. P. et al. (2015). Continuous control with deep reinforcement learning. In: *arXiv preprint arXiv:1509.02971*.
- Mnih, V. et al. (2015). Human-level control through deep reinforcement learning. In: *Nature* 518.7540, pp. 529–533.
- \blacksquare Schulman, J. et al. (2015). Trust region policy optimization. In: *Proceedings of the 32nd International Conference on Machine Learning (ICML-15)*, pp. 1889–1897.
- Schulman, J. et al. (2017). Proximal Policy Optimization Algorithms. In: *arXiv preprint arXiv:1707.06347*.
- Silver, D. et al. (2014). Deterministic policy gradient algorithms. In: *ICML*.