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Representation Learning in DRL

representation learning = learning useful high-level features

e.g., using CNNs to learn features indicating the presence of noses, eyes, ...

DRL relies on DNNs for representation learning
such learning is often guided by the reward alone

more supervisory signals can be constructed to learn better representations
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recall...
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https://playground.tensorflow.org/
a sigmoid unit approximately learns the concept of a circular area in 2D plane

* |In deep neural networks (> 1 hidden layer), deeper layers are capable
of learning higher-level features.

* This allows learning accurate models from raw features without
handcrafting high-level features.
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https://playground.tensorflow.org/

CURL

Contrastive Unsupervised Representations for Reinforcement Learning
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0q and o, are augmented versions of the observation o
source: (Laskin, Srinivas, and Abbeel, 2020)

® can be combined with any reinforcement learning algorithm

® additional supervisory signal is a contrastive loss (enforce similar representations for
similar observations)

Laskin, Srinivas, and Abbeel, CURL: Contrastive Ipe for learning, 2020
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Encoder Momentum Encoder
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0q and o, are augmented versions of the observation o
source: (Laskin, Srinivas, and Abbeel, 2020)

InfoNCE loss with bilinear similarity score for contrastive learning
_ exp(q T Wky)
exp(qT Wk ) + 1 exp(q T W)

where q = fo,(0q), k+ = fp, (0k), ki = fp, (0;) for another observation o
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f_g, f_k: encoder networks for anchor

{gquery) and target (keys) respectiw
loader: minibatch sample from Replay
B-batch_size, C-channels, H,W-spatial_dims

shape : [B,
> = c + num_frames;
momentum, e.g. 0.
_dim: lat dimensicon

_k.params = f_g.params

W = rand(z_dim, z_dim) §# bilinear product.
for x in loader: # load miniba from buffer
= aug(x} # random augm
aug(x) # different r
f_g.forward(x_q)
f_k.forward(x_k)

_k = z_k.detach{) # stop gradient

proj_k = matmul (W, z_k.T) # bilinear product
logits = matmul(z_qg, proj k) # & x B

# subtract max from logits for stability
logits = logits - max(logits, axis=1)

labels = arange (logits.shape[0])

loss = CrossEntropyLoss(logits, labels)
loss.backward()

update (£_g.params) # Adam

update (W) # Adam

f_k.params = m*f_k.params+ (1l-m)*f_g.params

(R/G/B) or 1 (gray)
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source: (Laskin, Srinivas, and Abbeel, 2020)
easy to implement
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500K STEP SCORES CURL PLANET DREAMER  SAC+AE SLACvV]  PIXEL SAC  STATE SAC
FINGER, SPIN 926 +45 5614284 796+ 183 884+ 128 673492 179 + 166 923 +21
CARTPOLE, SWINGUP 841 £ 45 475+ 71 762+£27 735+ 63 - 419 + 40 848 £ 15
REACHER, EASY 929 £ 44 2104390 793+ 164 627 £+ 58 - 145 £ 30 923 + 24
CHEETAH, RUN 518 +£28 305+ 131 570+ 253 550 + 34 640 + 19 197 £ 15 795 + 30
WALKER, WALK 902 £ 43 351438 897 £+ 49 847 + 48 842 + 51 42412 048 + 54
BALL IN CUP, CATCH 959 £ 27 460 £ 380 879 + 87 794+ 58 8524+ 71 312463 974 £33
100K STEP SCORES

FINGER, SPIN 767 £56 136 +£216 341270 740+ 64 693+ 141 179 £ 66 81146
CARTPOLE, SWINGUP 5824146 297439 326427 311+11 - 419440 835422
REACHER, EASY 538233 2050 314+155 274+14 - 145430 746425
CHEETAH. RUN 299 +48 138-£88 235+ 137 267424 319456 197415 616£18
WALKER, WALK 40324 224448 277+12 394422 361473 42+12 891:+£82
BALL IN CUP, CATCH 769 + 43 0+0 246 £ 174 39182 512+ 110 312+ 63 T46£91

source: (Laskin, Srinivas, and Abbeel, 2020)

STATE SAC uses state as observation, others uses images as observations
works very well
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Self-predictive Representation (SPR)
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source: (Schwarzer et al., 2020)

learn a representation that can be used to predict that of a future observation
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Stability

DRL algorithms use DNNs...

benefits: great representation learning

price: no free lunch — easily overfit, unstable performance

cure? slow down update, try adding constraints and regularizers...

covered: constraining representation learning
next: constraining and regularizing policy update — TRPO, PPO, SAC, ...
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Trust Region Policy Optimization
(TRPO)

Policy improvement theorem, adapted from (Schulman et al., 2015)
Consider a class of parametric stochastic policy {my : 6 € 8}, let

H(9) = arg(rrax Zpﬂe(s)ﬂ'g(a)Aﬂe (s,a)—C(my) max KL(mglI7) ,

s,a

N—_——
make ¢ pick good actions make ¢ close to 0

then
V(mh(ey) > V(7).

Notations:
® p.(s)is the discounted state distribution for 7
Ax(s,a) = Qx(s, a) — Vx(s, a) is the advantage function of =

C(ﬂ') _ 2~ ma?ff’:\).”(s,a)

w*(a) == (- | s)
KL(p||q) is the KL-divergence

Schulman et al., Trust region policy optimization, 2015
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theoretical TRPO policy update

Jb|0)=E i)
max (0 16) =Esvp,, avrs [wg(a)

St Bep., [KL(nSln%)] <4

ATé(s, a)}

trust region

derivation from policy improvement theorem
turn KL regularizer to constraint
rewrite sum of weighted advantage as expectation

replace max KL by average KL
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practical TRPO update
max g’ (¢ —9)
s.t. %(qﬁ —0)"H(p—0) <6
why? linearize objective, quadraticize constraint, using Taylor explansion

exact solution
0+ , /mH g, but may not satisfy KL constraint

approximate solution

0+ /gTH T g, with o € (0, 1) determined by backtracking, and H='g
computed using conjugate gradient
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Algorithm TRPO (adapted from OpenAl Spinning Up)

1:
2:

3:

b

Input: initial policy parameters 6y, initial value function parameters ¢o
Hyperparameters: KL-divergence limit ¢, backtracking coefficient «;, maximum
number of backtracking steps K
fork =0,1,2,...do

Collect trajectories 71, ..., 7a by running policy s, .

Compute advantage estimates, A (using any method of advantage estima-
tion) based on the current value function Vy, .

Estimate policy gradient as gk = % 3>, 31y Vo log m(a|st)[,, Ar.

Compute X ~ I:lk’1§7k using conjugate gradient, where Fy is the Hessian of
the sample average KL.

Update policy by backtracking for smallest j € {0,1,2,...K} such that

25

Okir = Ok + o\ [ —F— R«
- XkTHka

improves the sample loss and satisfies the sample KL-divergence constraint.
Fit value function by least squares regression on rewards-to-go R;:

;
Pt = arg min % Z; (V¢(Sr) - 'Ef'r>2 ;

typically via some gradient descent algorithm.

TRPO is on-policy, works for both discrete or continuous A.
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Proximal Policy Optimization (PPO)

TRPO makes updates more stable, but very complex!

PPO (Schulman et al., 2017) also makes updates stable, but much simpler.
PPO-penalty: uses a KL-regularizer with adaptive regularization strength
PPO-clip: clip the objective function to prevent large update

Schulman et al., Proximal Policy Optimization Algorithms, 2017
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TRPO objective
n5(a)

¢ T

S~prg ,a~7rg |:7Tg(a) A (S’ a):l

subject to the trust region constraint

max E
]

PPO-clip objective

ﬂ 1—e¢ 1+e> ATe (s a))
m5(a) sa’ ’

(@ i
mngSpr,aNﬂ,g min AT0 (s, a),clip —
no constraint

why clipping keeps the update small?
LA C)
3

® positive A: larger ratio r = —§
g (a)

preferred, but no incentive to go above 1 + e.

® negative A: smaller r preferred, but no incentive to go below 1 — e.
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Algorithm PPO-Clip (OpenAl Spinning Up)
1: Input: initial policy parameters 6y, initial value function parameters ¢o
2: fork=0,1,2,...do
3: Collect trajectories 1, . .., 7y by running policy m, .
4: Compute advantage estimates, A (using any method of advantage estima-
tion) based on the current value function Vg, .
5: Update the policy by maximizing the PPO-Clip objective:

s =gtz 3= S ( ( T )>"‘°1+€> Aw(s"”)’

€Dy t=0

typically via stochastic gradient ascent with Adam.

6: Fit value function by least squares regression on rewards-to-go R
Pyt = argmm \D T ; §< (St) Ff,) ,

typically via some gradient descent algorithm.

PPO is on-policy
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Few-shot RL

few/one/zero-shot learning: learn from few/one/zero examples

how is this possible?
domain adaptation/transfer learning: pre-train a model, adapt to a new domain

meta-learning: train a model using multiple tasks, picking up task-agnostic patterns and
task-specific patterns at the same time
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The study of zero-shot lisation (ZSG) in deep Rei Learning (RL)

aims to produce RL algorithms whose policies generalise well to novel unseen situations at
deployment time, avoiding overfitting to their training environments. Tackling this is vital
if we are to deploy reinforcement learning algorithms in real world scenarios, where the
environment will be diverse, dynamic and unpredictable. This survey is an overview of this
nascent field. We rely on a unifying formalism and terminology for discussing different ZSG
problems, building upon previous works. We go on to categorise existing benchmarks for
738G, as well as current methods for tackling these problems. Finally, we provide a critical
discussion of the current state of the field, including recommendations for future work.
Among other conclusions, we argue that taking a purely procedural content generation
approach to benchmark design is not conducive to progress in ZSG, we suggest fast online
adaptation and tackling RL-specific problems as some areas for future work on methods for
Z8G, and we recommend building benchmarks in underexplored problem settings such as
offline RL ZSG and reward-function variation.

Kirk et al., A survey of zero-shot generalisation in deep reinforcement learning, 2023
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Does Zero-Shot Reinforcement Learning Exast?

Ahmed Touati, Jérémy Rapin, Yann Ollivier *

March 2, 2023

Abstract

A zero-shot RL agent is an agent that can solve any RL task in a given environ-
ment, instantly with no additional planning or learning, after an initial reward-free
learning phase. This marks a shift from the reward-centric RL paradigm towards
“controllable”™ agents that can follow arbitrary instructions in an environment. Cur-
rent RL agents can solve families of related tasks at best, or require planning anew
for each task. Strategies for approximate zero-shot RL have been suggested using
successor features {SFs) [BBQ™ 18] or forward-backward (F13) representations [TO21|
but testing has been limited.

After clarifying the relationships between these schemes, we introduce improved
losses and new SF maodels, and test the viability of zero-shot RL schemes system-
atically on taslks from the Unsupervised RL benchmark [LYL'21]. To disentangle
universal representation learning from exploration, we work in an offline setting and
repeat the tests on several existing replay buffers.

SFs appear to suffer from the choice of the elementary state features. SFs with
Laplacian eigenfunetions do well. while SFs based on auto-encoders, inverse curiosity.
transition maodels, low-rank transition matrix, contrastive le ng, or diversity
(APS). perform unconsistently. In contrast, FB representations jointly learn the
elementary and successor features from a single, principled criterion. They perform
best and consistently across the board, reaching 85% of supervised RL performance
with a good replay buffer, in a zero-shot manner.

Touati, Rapin, and Ollivier, Does Zero-Shot Reinforcement Learning Exist?, 2022
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