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temporal difference methods, policy gradient, . . .
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representation learning, stabilization, few-shot learning

∙ Applications
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Representation Learning in DRL

representation learning = learning useful high-level features
e.g., using CNNs to learn features indicating the presence of noses, eyes, . . .

DRL relies on DNNs for representation learning
such learning is often guided by the reward alone

more supervisory signals can be constructed to learn better representations
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recall...

https://playground.tensorflow.org/

a sigmoid unit approximately learns the concept of a circular area in 2D plane

∙ In deep neural networks (> 1 hidden layer), deeper layers are capable
of learning higher-level features.

∙ This allows learning accurate models from raw features without
handcrafting high-level features.
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CURL
Contrastive Unsupervised Representations for Reinforcement Learning

oq and ok are augmented versions of the observation o
source: (Laskin, Srinivas, and Abbeel, 2020)

∙ can be combined with any reinforcement learning algorithm
∙ additional supervisory signal is a contrastive loss (enforce similar representations for

similar observations)

Laskin, Srinivas, and Abbeel, CURL: Contrastive unsupervised representations for reinforcement learning, 2020
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oq and ok are augmented versions of the observation o
source: (Laskin, Srinivas, and Abbeel, 2020)

InfoNCE loss with bilinear similarity score for contrastive learning

L =
exp(q⊤Wk+)

exp(q⊤Wk+) +
∑︀K−1

i=0 exp(q⊤Wki )
.

where q = f𝜃q (oq), k+ = f𝜃k (ok ), ki = f𝜃k (oi ) for another observation oi
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source: (Laskin, Srinivas, and Abbeel, 2020)

easy to implement
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source: (Laskin, Srinivas, and Abbeel, 2020)

STATE SAC uses state as observation, others uses images as observations

works very well
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Self-predictive Representation (SPR)

source: (Schwarzer et al., 2020)

learn a representation that can be used to predict that of a future observation
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Stability

DRL algorithms use DNNs...

benefits: great representation learning

price: no free lunch – easily overfit, unstable performance

cure? slow down update, try adding constraints and regularizers...

covered: constraining representation learning
next: constraining and regularizing policy update – TRPO, PPO, SAC, ...
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Trust Region Policy Optimization

(TRPO)

Policy improvement theorem, adapted from (Schulman et al., 2015)

Consider a class of parametric stochastic policy {𝜋𝜃 : 𝜃 ∈ Θ}, let

H(𝜃) = argmax
𝜑

⎡⎢⎣∑︁
s,a

𝜌𝜋𝜃
(s)𝜋s

𝜑(a)A𝜋𝜃
(s,a)⏟  ⏞  

make 𝜑 pick good actions

−C(𝜋𝜑)max
s

KL(𝜋s
𝜃‖𝜋s

𝜑)⏟  ⏞  
make 𝜑 close to 𝜃

,

⎤⎥⎦
then

V (𝜋H(𝜃)) ≥ V (𝜋𝜃).

Notations:
∙ 𝜌𝜋(s) is the discounted state distribution for 𝜋

A𝜋(s, a) = Q𝜋(s, a) − V𝜋(s, a) is the advantage function of 𝜋

C(𝜋) =
2𝛾 maxs,a A𝜋 (s,a)

(1−𝛾)

𝜋s(a) := 𝜋(· | s)

KL(p‖q) is the KL-divergence

Schulman et al., Trust region policy optimization, 2015
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theoretical TRPO policy update

max
𝜑

J(𝜑 | 𝜃) = Es∼𝜌𝜋𝜃
,a∼𝜋s

𝜃

[︂
𝜋s
𝜑(a)

𝜋s
𝜃(a)

A𝜋𝜃 (s,a)
]︂

s.t. Es∼𝜌𝜋𝜃

[︀
KL

(︀
𝜋s
𝜃‖𝜋s

𝜑

)︀]︀
≤ 𝛿⏟  ⏞  

trust region

derivation from policy improvement theorem
turn KL regularizer to constraint

rewrite sum of weighted advantage as expectation

replace max KL by average KL
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practical TRPO update

max
𝜑

g⊤(𝜑− 𝜃)

s.t.
1
2
(𝜑− 𝜃)⊤H(𝜑− 𝜃) ≤ 𝛿.

why? linearize objective, quadraticize constraint, using Taylor explansion

exact solution

𝜃 +
√︁

2𝛿
g⊤H−1g H−1g, but may not satisfy KL constraint

approximate solution

𝜃 + 𝛼
√︁

2𝛿
g⊤H−1g H−1g, with 𝛼 ∈ (0,1) determined by backtracking, and H−1g

computed using conjugate gradient
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Algorithm TRPO (adapted from OpenAI Spinning Up)
1: Input: initial policy parameters 𝜃0, initial value function parameters 𝜑0

2: Hyperparameters: KL-divergence limit 𝛿, backtracking coefficient 𝛼, maximum
number of backtracking steps K

3: for k = 0, 1, 2, ... do
4: Collect trajectories 𝜏1, . . . , 𝜏N by running policy 𝜋𝜃k .
5: Compute advantage estimates, Ât (using any method of advantage estima-

tion) based on the current value function V𝜑k .
6: Estimate policy gradient as ĝk = 1

N

∑︀
i

∑︀T
t=0 ∇𝜃 log 𝜋𝜃(at |st)|𝜃k

Ât .

7: Compute x̂k ≈ Ĥ−1
k ĝk using conjugate gradient, where Ĥk is the Hessian of

the sample average KL.
8: Update policy by backtracking for smallest j ∈ {0, 1, 2, ...K} such that

𝜃k+1 = 𝜃k + 𝛼j

√︃
2𝛿

x̂T
k Ĥk x̂k

x̂k

improves the sample loss and satisfies the sample KL-divergence constraint.
9: Fit value function by least squares regression on rewards-to-go R̂t :

𝜑k+1 = arg min
𝜑

1
NT

∑︁
i

T∑︁
t=0

(︁
V𝜑(st)− R̂t

)︁2
,

typically via some gradient descent algorithm.

TRPO is on-policy, works for both discrete or continuous A.

13 / 21



Proximal Policy Optimization (PPO)

TRPO makes updates more stable, but very complex!

PPO (Schulman et al., 2017) also makes updates stable, but much simpler.
PPO-penalty: uses a KL-regularizer with adaptive regularization strength

PPO-clip: clip the objective function to prevent large update

Schulman et al., Proximal Policy Optimization Algorithms, 2017
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TRPO objective

max
𝜑

Es∼𝜌𝜋𝜃
,a∼𝜋s

𝜃

[︃
𝜋s
𝜑(a)

𝜋s
𝜃(a)

A𝜋𝜃 (s, a)

]︃
subject to the trust region constraint

PPO-clip objective

max
𝜑

Es∼𝜌𝜋𝜃
,a∼𝜋s

𝜃
min

(︃
𝜋s
𝜑(a)

𝜋s
𝜃(a)

A𝜋𝜃 (s, a), clip

(︃
𝜋s
𝜑(a)

𝜋s
𝜃(a)

, 1 − 𝜖, 1 + 𝜖

)︃
A𝜋𝜃 (s, a)

)︃
no constraint

why clipping keeps the update small?

∙ positive A: larger ratio r =
𝜋s
𝜑
(a)

𝜋s
𝜃
(a)

preferred, but no incentive to go above 1 + 𝜖.

∙ negative A: smaller r preferred, but no incentive to go below 1 − 𝜖.
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Algorithm PPO-Clip (OpenAI Spinning Up)
1: Input: initial policy parameters 𝜃0, initial value function parameters 𝜑0

2: for k = 0, 1, 2, ... do
3: Collect trajectories 𝜏1, . . . , 𝜏N by running policy 𝜋𝜃k .
4: Compute advantage estimates, Ât (using any method of advantage estima-

tion) based on the current value function V𝜑k .
5: Update the policy by maximizing the PPO-Clip objective:

𝜃k+1 = argmax
𝜃

1
|𝒟k |T

∑︁
𝜏∈𝒟k

T∑︁
t=0

min

(︃
𝜋s
𝜃(a)

𝜋s
𝜃k
(a)

A𝜋𝜃k (s, a), clip

(︃
𝜋s
𝜃(a)

𝜋s
𝜃k
(a)

, 1 − 𝜖, 1 + 𝜖

)︃
A𝜋𝜃k (s, a)

)︃
,

typically via stochastic gradient ascent with Adam.
6: Fit value function by least squares regression on rewards-to-go R̂t :

𝜑k+1 = argmin
𝜑

1
|𝒟k |T

∑︁
𝜏∈𝒟k

T∑︁
t=0

(︁
V𝜑(st)− R̂t

)︁2
,

typically via some gradient descent algorithm.

PPO is on-policy
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Few-shot RL

few/one/zero-shot learning: learn from few/one/zero examples

how is this possible?
domain adaptation/transfer learning: pre-train a model, adapt to a new domain

meta-learning: train a model using multiple tasks, picking up task-agnostic patterns and
task-specific patterns at the same time
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Kirk et al., A survey of zero-shot generalisation in deep reinforcement learning, 2023

18 / 21



Touati, Rapin, and Ollivier, Does Zero-Shot Reinforcement Learning Exist?, 2022
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