
Reinforcement Learning

Lecture 5 Applications

Nan Ye

School of Mathematics and Physics
The University of Queensland

Roadmap

∙ Introduction and overview
motivation, bandits, big picture

∙ Classical ideas
temporal difference methods, policy gradient, . . .

∙ Deep Reinforcement learning
neural networks, DQN, DDPG, . . .

∙ Advanced techniques
representation learning, stabilization, few-shot learning

∙ Applications
AlphaGo, AlphaTensor, . . .

1 / 21

Deep Q-Networks (DQN) for Atari

Games

recall...

Atari
https://gymnasium.farama.org/environments/atari/

2 / 21

https://gymnasium.farama.org/environments/atari/

AlphaGo

source: DeepMind

first AI to beat a professional Go player, w/o handicap, on 19 × 19 board

Silver et al., Mastering the game of Go with deep neural networks and tree search, 2016

3 / 21

https://deepmind.google/technologies/alphago

source: DeepMind

from AlphaGo to MuZero

4 / 21

https://deepmind.google/discover/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/

AlphaGo Zero (Silver et al., 2017)

superhuman GO AI trained by self-play, w game rules, w/o human knowledge
loop(collect experiences by self-play + incremental updates of a policy & value network f𝜃)

self-play... of an improved version of self

source: (ibid.)
each move given by an improved policy MCTSf𝜃

obtained by performing MCTS with the guidance of f𝜃

Silver et al., Mastering the game of Go without human knowledge, 2017

5 / 21

policy & value network

(p, v) = f𝜃(s),

maps a position s to move probabilities p and value v (+: winning; -: losing).

MCTS policy improvement

source: (Silver et al., 2017)
MCTS grows the search tree in an optimistic manner, using f𝜃 to evaluate leaf nodes

6 / 21

experience collection by self-play
experiences from one game: (s1, q1, z1), (s2, q2, z2), . . .

qt = MCTSf𝜃 (st) are the move probabilites given by the improved policy

the move for st is sampled from the move distribution qt

zt = −1 if the player at t lose in the end, zt = +1 otherwise

incremental learning
perform gradient descent minimize loss on random mini-batch of experiences

L(𝜃, (s, q, z)) = (z − v)2 − q⊤ ln p + c‖𝜃‖2
2, where (q, v) = f𝜃(s)

7 / 21

source: (Silver et al., 2017)

AlphaGo Lee: defeated Lee Sedol in Mar 2016; AlphaGo Master: defeated top human players by 60-0 in Jan 2017

learning curve for AlphaGo Zero

neural network with 84 parameterized layers
29 million games of self-play over 40 days on a single machine with 4 TPUs

8 / 21

what has AlphaGo Zero learned?

“AlphaGo Zero discovered a remarkable level of Go knowledge during its self-play
training process. This included not only fundamental elements of human Go knowl-
edge, but also non-standard strategies beyond the scope of traditional Go knowl-
edge.” (Silver et al., 2017)

9 / 21

AlphaTensor

recall...

learning fast matrix multiplication
https://www.youtube.com/watch?v=fDAPJ7rvcUw

10 / 21

https://www.youtube.com/watch?v=fDAPJ7rvcUw

what’s the time complexity for multiplying two matrices A,B ∈ Rn×n?

standard algorithm: O(n3)

Strassen’s algorithm: O(n2.8074)
7 multiplications when n = 2, best possible

used in practice for large matrices

exists asymptotically better algorithms (record = O(n2.371552)), but galactic

AlphaTensor: O(n2.778) for matrices in finite filed Z2 (Fawzi et al., 2022)
outperforms Strassen’s algorithm in practice!

Fawzi et al., Discovering faster matrix multiplication algorithms with reinforcement learning, 2022

11 / 21

discovering matrix multiplication as sequential decision making
Step 1. matrix multiplication = a 3D tensor T

Step 2. low-rank decomposition of T = a multiplication algorithm

Step 3. search for a low-rank decomposition ∈ sequential decision making

12 / 21

Step 1. matrix multiplication = a 3D tensor T

exists an n2 × n2 × n2 tensor T , for any n × n matrices A,B,C,

C = AB equivalent to ck =
∑︁
i,j

Tijk ai bj , ∀k .

intuitively, Tijk = 1 if the product of the i-th entry of A and the j-th entry of B is a term in the kth entry of
C = AB.

e.g., T(1,2),(2,3),(1,3) = 1, T(1,2),(1,3),(1,3) = 0

13 / 21

Step 2. low-rank decompsition of T = a multiplication algorithm

T =
R∑︁

r=1

u(r) ⊗ v (r) ⊗ w (r) ⇒ ck =
R∑︁

r=1

w (r)
k A(r)B(r), where

A(r) =
∑︁

i

u(r)
i ai , B(r) =

∑︁
j

v (r)
j bj

algorithm: compute each A(r), B(r) and C(r) = A(r)B(r) first, then compute each ck

complexity: ≤ 2Rn2⏟ ⏞
n2 for each A(r), B(r)

+ R⏟ ⏞
1 for each C(r)

+ Rn2⏟ ⏞
R for each ck

= 3Rn2 + R multiplications.

make it faster:
many zeros or ones in u(r) ⇒ computing A(r) takes far fewer than n2 ×

many zeros or ones in v (r) ⇒ computing B(r) takes far fewer than n2 ×

zeros or ones in w (r) ⇒ computing ck takes fewer than 2R ×

14 / 21

(︂
c1 c2
c3 c4

)︂
=

(︂
a1 a2
a3 a4

)︂(︂
b1 b2
b3 b4

)︂
Strassen’s algorithm

r A(r) B(r)

1 a1 + a4 b1 + b4
2 a3 + a4 b1
3 a1 b2 − b4
4 a4 b3 − b1
5 a1 + a2 b4
6 a3 − a1 b1 + b2
7 a2 − a4 b3 + b4

c1 = C(1) + C(4) − C(5) + C(7)

c2 = C(3) + C(5)

c3 = C(2) + C(4)

c4 = C(1) − C(2) + C(3) + C(6)

0 ×’s for A(r), B(r) and ck , only 7 ×’s for C(r)

15 / 21

Step 3. search for a low-rank decomposition ∈ sequential decision making

search for a low-rank decomposition by subtracting one rank-1 tensor at a time

16 / 21

Algorithm Simulating a policy 𝜋𝜃 for TensorGame
1: Initial state S0 = T
2: for t = 0 to M do
3: Sample an action (u, v ,w) from a policy 𝜋𝜃(St)
4: Transition to next state St+1 = St − u ⊗ v ⊗ w
5: if St+1 = 0 then
6: break; //an exact decomposition has been found

7: Apply a penalty =

{︃
−1, t < M,

−𝛾(St+1), t = M,
, where 𝛾(St+1) is an upper bound on

the rank of St+1

note the state, action, transition, and reward

17 / 21

Some tricks in implementation
∙ Entries of u, v ,w vectors are constrained to take values from a small set of integers, so

as to guarantee an exact decomposition that can be provably verified.
∙ A policy and value network: transformer, invariance to permutation of slices.
∙ Synthetic demonstrations (generated tensor decompositions)
∙ Random change of basis of T
∙ Data augmentation (generate new examples by changing order of summation)

18 / 21

These Lectures

Reinforcement Learning (RL)

Goals
∙ cover mathematical & algorithmic foundation
∙ in-depth look at a few cool applications
∙ develop basic practical skills

19 / 21

The End, The Beginning

∙ Introduction and overview
origin, applications, regret min for bandits, RL loop, four dimensions, three problems

∙ Classical ideas
MDPs, Gym, value iteration, Q-learning, SARSA, REINFORCE, model-based RL

∙ Deep Reinforcement learning
ANNs in 5 mins, DQN, Rainbow DQN, DDPG, RL software

∙ Advanced techniques
representation learning (CURL, SPR), stabilization (TRPO, PPO), few-shot learning

∙ Applications
AlphaGo Zero, AlphaTensor

many more not covered, numerous new things, see NeurIPS, ICML, ICLR, . . .

try the ideas out when it comes to decision-making

20 / 21

References I

Fawzi, A. et al. (2022). Discovering faster matrix multiplication
algorithms with reinforcement learning. In: Nature 610.7930, pp. 47–53.
Silver, D. et al. (2016). Mastering the game of Go with deep neural

networks and tree search. In: Nature 529.7587, pp. 484–489.
Silver, D. et al. (2017). Mastering the game of Go without human

knowledge. In: Nature 550.7676, p. 354.

21 / 21

	References

