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Introduction and overview

motivation, bandits, big picture
Classical ideas
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Deep Reinforcement learning

neural networks, DQN, DDPG, ...
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Applications
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Deep Q-Networks (DQN) for Atari
Games

Adventure Alien

recall...

Atari

https://gymnasium.farama.org/environments/atari/
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https://gymnasium.farama.org/environments/atari/

AlphaGo
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source: DeepMind

first Al to beat a professional Go player, w/o handicap, on 19 x 19 board

Silver et al., Mastering the game of Go with deep neural networks and tree search, 2016
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https://deepmind.google/technologies/alphago

Domai Knowledge
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AlphaGo becomes the first program to master Go using
neural networks and tree search
(Jan 2016, Nature)

AlfhaGo Zero. o Snows

—

AlphaGo Zero learns to play completely on its own,
without human knowledge
(Oct 2017, Nature)

Known
Go Chess  Shogi rules

AlphaZero masters three perfect information games
using a single algorithm for all games
(Dec 2018, Science)

MuZero _

Go Chess  Shogi  Atari

MuZero learns the rules of the game, allowing it to also

master environments with unknown dynamics
(Dec 2020, Nature)

source: DeepMind

from AlphaGo to MuZero

Known
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https://deepmind.google/discover/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/

AlphaGo Zero (Silver et al., 2017)

superhuman GO Al trained by self-play, w game rules, w/o human knowledge
loop(collect experiences by self-play + incremental updates of a policy & value network fg)

self-play... of an improved version of self

Self-play =z

source: (ibid.)
each move given by an improved policy MCTS;,
obtained by performing MCTS with the guidance of fy

Silver et al., Mastering the game of Go without human knowledge, 2017
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policy & value network

(p7 V) = fg(S),
maps a position s to move probabilities p and value v (+: winning; -: losing).

MCTS policy improvement
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source: (Silver et al., 2017)
MCTS grows the search tree in an optimistic manner, using f, to evaluate leaf nodes
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experience collection by self-play
experiences from one game: (s1, g1, 21), (S2, Q2, 22), - - -

gt = MCTS;, (st) are the move probabilites given by the improved policy
the move for s; is sampled from the move distribution g;
z; = —1 if the player at t lose in the end, z; = +1 otherwise

incremental learning
perform gradient descent minimize loss on random mini-batch of experiences

L(0,(s,9,2)) = (z—v)®? —q" Inp+c|l]3, where (g, v) = fo(s)
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Elo rating
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source: (Silver et al., 2017)

AlphaGo Lee: defeated Lee Sedol in Mar 2016; AlphaGo Master: defeated top human players by 60-0 in Jan 2017

learning curve for AlphaGo Zero

neural network with 84 parameterized layers

29 million games of self-play over 40 days on a single machine with 4 TPUs
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what has AlphaGo Zero learned?

“AlphaGo Zero discovered a remarkable level of Go knowledge during its self-play
training process. This included not only fundamental elements of human Go knowl-
edge, but also non-standard strategies beyond the scope of traditional Go knowl-
edge.” (Silver et al., 2017)
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AlphaTensor

recall...

learning fast matrix multiplication

https://www.youtube.com/watch?v=fDAPJ7rvcUw
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https://www.youtube.com/watch?v=fDAPJ7rvcUw

what’s the time complexity for multiplying two matrices A, B € R"™*"?
standard algorithm: O(n®)

Strassen’s algorithm: O(n?-8074)
7 multiplications when n = 2, best possible
used in practice for large matrices
exists asymptotically better algorithms (record = O(n?-371%52)), but galactic

AlphaTensor: O(n?778) for matrices in finite filed Z, (Fawzi et al., 2022)
outperforms Strassen’s algorithm in practice!

Fawzi et al., Discovering faster matrix multiplication algorithms with reinforcement learning, 2022
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discovering matrix multiplication as sequential decision making
Step 1. matrix multiplication = a 3D tensor T
Step 2. low-rank decomposition of T = a multiplication algorithm
Step 3. search for a low-rank decomposition € sequential decision making
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Step 1. matrix multiplication = a 3D tensor T

exists an n? x n? x n? tensor T, for any n x n matrices A, B, C,
C=AB equivalentto ¢, = Tjabj, VK.
ij
intuitively, Ty = 1 if the product of the i-th entry of A and the j-th entry of B is a term in the kth entry of
C = AB.

e.9. Tn2).23.0.8 =1 T(1,2),01.3,01,3 =0
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Step 2. low-rank decompsition of T = a multiplication algorithm

R R
T=Suevew) = ¢=S wlADB, where
r=1

r=1 =
AD =S ua;, B0 =3 VO,
i i

algorithm: compute each A(), B() and C(") = A(") B(") first, then compute each ¢,

complexity: < 2R + R + ﬁrﬁ = 3Rn? + R multiplications.

~—
n? for each A), B") 1 foreach c(") R foreach ¢y

make it faster:
many zeros or ones in u\") = computing A" takes far fewer than n* x

many zeros or ones in v\") = computing B\") takes far fewer than n? x

zeros or ones in w") = computing cx takes fewer than 2R x
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Strassen’s algorithm
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0 x’s for A", B") and ¢, only 7 x’s for C(")
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Step 3. search for a low-rank decomposition € sequential decision making

search for a low-rank decomposition by subtracting one rank-1 tensor at a time
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Algorithm Simulating a policy 7y for TensorGame

1: Initial state Sp = T

2: fort=0to Mdo

3 Sample an action (u, v, w) from a policy 7s(S;)
4: Transition to next state Sy,1 = St — UV W
5:
6

if S;.1 = 0 then
break; //an exact decomposition has been found
—1 M
7: Apply a penalty = ’ t< ’, where (S;+1) is an upper bound on
—(Str1), t=M,
the rank of Sy 4

note the state, action, transition, and reward
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Some tricks in implementation

® Entries of u, v, w vectors are constrained to take values from a small set of integers, so
as to guarantee an exact decomposition that can be provably verified.

® A policy and value network: transformer, invariance to permutation of slices.

® Synthetic demonstrations (generated tensor decompositions)

® Random change of basis of T

® Data augmentation (generate new examples by changing order of summation)
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These Lectures

Reinforcement Learning (RL)

Goals
e cover mathematical & algorithmic foundation
¢ in-depth look at a few cool applications
¢ develop basic practical skills
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The End, The Beginning

Introduction and overview
origin, applications, regret min for bandits, RL loop, four dimensions, three problems

Classical ideas
MDPs, Gym, value iteration, Q-learning, SARSA, REINFORCE, model-based RL

Deep Reinforcement learning
ANNSs in 5 mins, DQN, Rainbow DQN, DDPG, RL software

Advanced techniques
representation learning (CURL, SPR), stabilization (TRPO, PPO), few-shot learning

Applications
AlphaGo Zero, AlphaTensor
many more not covered, numerous new things, see NeurlPS, ICML, ICLR, ...

try the ideas out when it comes to decision-making
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