
Bayesian Methods

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 55



Where Are We Heading to?

How to build good ML models
∙ Making use of a crowd ⇒ Week 7 Ensemble methods

each of us is a biological prediction model trained on different datasets...

∙ Using a neural network ⇒ Week 8 and 9 Neural networks
brain-inspired models, some are good for images...

∙ Making a robust model ⇒ Week 10 Robust machine learning
malicious users, outliers,...

∙ Asking for explanations ⇒ Week 11 Interpretable machine learning
...let’s ask the machines for explanations...

∙ Exploiting prior beliefs ⇒ Week 12 Bayesian methods

2 / 55



Frequentist vs Bayesian

3 / 55



∙ We are often interested in learning probabilistic models of a given
dataset

a probabilistic model describes a probabilistic process that generates
the data
e.g. Gaussian distributions form a class of probabilistic model for
real-valued observations

∙ The frequentist approach picks a probabilistic model that best fits
the dataset

e.g., naive Bayes classifier

∙ The Bayesian approach assigns a weight to each candidate
probabilistic model by using the Bayes’ rule to combine

prior subjective assessment on how likely the model is, and
how well the model explains the dataset.

4 / 55



Bayesian Learning

Frequentist learning

∙ Suppose we have a dataset D, and we have a family of probabilistic
models {p(· | 𝜃) : 𝜃 ∈ Θ}, where 𝜃 is the parameter vector of
p(D | 𝜃), and Θ is the parameter space.

∙ In the frequentist approach, we often learn a single model p(· | 𝜃)
by maximizing the likelihood

max
𝜃

p(D | 𝜃),

where p(D | 𝜃) is the probability that D is generated by the model
p(· | 𝜃), and often called the likelihood.

∙ The likelihood is a measure of the compatibility between the model
𝜃 and the data D.

5 / 55



Bayes’ Theorem (aka Bayes’ law or Bayes’ rule)

∙ For two events A and B, if P(B) ̸= 0, then

P(A | B) = P(B | A)P(A)
P(B)

.

∙ Interpretation

B: the observation/evidence
P(A): the prior, or the initial belief for A
P(B | A): the likelihood
P(A | B): the posterior, or the belief for A after observing B

6 / 55



Bayesian learning

∙ In the Bayesian approach, instead of learning a single model, we
learn a distribution on all the models in Θ.

∙ Specifically, we assume a prior distribution p(𝜃) on Θ, and given a
dataset D, we compute a posterior

posterior⏞  ⏟  
p(𝜃 | D) = p(𝜃)p(D | 𝜃)/Z ∝

prior⏞ ⏟ 
p(𝜃)

likelihood⏞  ⏟  
p(D | 𝜃),

where the normalization constant Z is

Z =

{︃∑︀
𝜃∈Θ p(𝜃)p(D | 𝜃), if p(𝜃) is discrete,∫︀

Θ p(𝜃)p(D | 𝜃)d𝜃, if p(𝜃) is continuous.
.

∙ The posterior distribution p(𝜃 | D) can be used in various ways
when performing inference.

7 / 55



Inference problems

∙ Compute the MAP (maximum a posterior) model:

𝜃MAP = argmax
𝜃∈Θ

p(𝜃 | D).

∙ Compute the (posterior) predictive distribution:

p(y | D, x) =

∫︁
p(y | 𝜃, x)p(𝜃 | D)d𝜃.

∙ Compute posterior mean and variance of Y given x :

posterior mean 𝜇x = E(Y | x ,D) =

∫︁
yp(y | D, x)dy

posterior variance 𝜎2
x = Var(Y | x ,D) =

∫︁
(y − 𝜇x)

2p(y | D, x)dy

8 / 55



Bayesian method as an ensemble method

Ddata

w1,M1 w2,M2 . . . wN ,MNprior

w ′
1,M1 w ′

2,M2 . . . w ′
N ,MNposterior

prediction test data

∙ Learning (computing posterior): construct a weighted ensemble of
(often infinitely many) models using the Bayes’ rule .

∙ Prediction: aggregate the ensemble’s predictions (e.g., by
computing the weighted average prediction).

9 / 55



Example. Learning the probability of Heads

∙ Peter has two coins: the probability of Heads for one is 0.5, and
0.8 for the other. He chooses a coin, tosses it twice and observes
one Head and one Tail. What’s the probability of Heads of the
chosen coin?

∙ The parameter space is Θ = {0.5, 0.8}, the dataset D is a
sequence of two Heads, and the likelihood is

p(D | 𝜃) = 𝜃(1− 𝜃).

10 / 55



The frequentist solution

∙ We have

p(D | 𝜃 = 0.5) = 0.25,

p(D | 𝜃 = 0.8) = 0.16.

∙ Thus 𝜃 = 0.5 is more compatible with the observations, and we
may believe that the probability of Heads for the chosen coin is 0.5.

11 / 55



The Bayesian solution

∙ We heard from a close friend of Peter that he likes the biased coin
and chooses it with probability 0.9, that is, our prior is
p(𝜃 = 0.5) = 0.1 and p(𝜃 = 0.8) = 0.9.

∙ We have p(𝜃 = 0.5)p(D | 𝜃 = 0.5) = 0.025, and
p(𝜃 = 0.8)p(D | 𝜃 = 0.8) = 0.144, thus the posterior distribution is

p(𝜃 | D) =

{︃
25/169 𝜃 = 0.5

144/169 𝜃 = 0.8.

The MAP model is 𝜃 = 0.8, thus we may believe that the
probability of Heads for the chosen coin is 0.8.

12 / 55



∙ The posterior mean of 𝜃 is 0.5× 25/169 + 0.8× 144/169 = 0.76.
The standard deviation of 𝜃 given D is 0.18 (exercise).

∙ The probability distribution of the outcomes of next two tosses is

outcome HH HT TH TT

p 0.5823 0.1733 0.1733 0.0711

13 / 55



Bayesian regression and classification
∙ In Bayesian regression and classification methods,

the probabilistic model p(D | 𝜃) is often much more complex than a
simple Bernoulli distribution, and
the prior p(𝜃) is much more complex than a discrete distribution.

∙ Two challenges

Specifying a good prior can be hard.
The inference problems are often computationally hard.

∙ We focus on the Gaussian processes, which

support a wide range of priors on all possible functions,
allow elegant algorithms for the inference problems.

14 / 55



From SVM to Gaussian Process

Support vector regression

∙ Recall: in binary support vector classifier, the discriminant function
is of the form

f (x) =
∑︁
i

𝛼iyik(xi , x).

x is predicted to be positive if f (x) > 0 and negative otherwise.

∙ SVMs can be used for regression too, and the regressor is of the
form

f (x) =
∑︁
i

𝛼ik(xi , x).

15 / 55



Gaussian processes (GPs)

∙ Gaussian processes also produce regression estimates of the same
form as SVMs:

f (x) =
∑︁
i

𝛼ik(xi , x).

∙ However, there are a few important differences

SVM predicts a single estimated value, but GP predicts a
distribution on the possible values.
in SVM, the kernel hyperparameters are often tuned by using
methods like cross validation to choose the best values from a small
set of candidate values; in GP, the hyperparameters can be
optimized over all possible values using numerical optimization
methods.

16 / 55



Example. Learning the sine function

∙ Y = sin(2𝜋x) + 𝜖, where 𝜖 ∼ N(0, 0.12).

∙ Training set: x sampled from [0, 1]

∙ Prediction: x sampled from [-1, 2]

⇒ we can observe how well an algorithm interpolates and
extrapolates.

17 / 55



SVM (RBF kernel with 𝛾 = 2000) Gaussian process (RBF kernel)

18 / 55



Gaussian Distributions 101 102

Univariate Gaussian distribution

∙ A random variable Y is said to follow a univariate Gaussian
distribution N(𝜇, 𝜎2) if its probability density function (PDF) is

f (y) =
1√
2𝜋𝜎

exp

(︂
−(y − 𝜇)2

2𝜎2

)︂
. (1)

∙ We often write this as Y ∼ N(𝜇, 𝜎2), and use N(y ;𝜇, 𝜎2) to
denote the PDF.

19 / 55



x

f (x)

PDF of a Gaussian distribution

20 / 55



Multivariate Gaussian distribution

∙ A random vector Y = (Y1, . . . ,Yn)
⊤ is said to follow a

multivariate Gaussian distribution N(𝜇,Σ) with mean 𝜇 and
covariance matrix Σ if its PDF is

f (y) =
1√︀
|2𝜋Σ|

exp

(︂
−1

2
(y − 𝜇)⊤Σ−1(y − 𝜇)

)︂
, (2)

where we use the notation |A| to denote the determinant of a
matrix A.

∙ We often write this as Y ∼ N(𝜇,Σ), and use N(y;𝜇,Σ) to denote
the PDF.

21 / 55



PDF of a bivariate Gaussian

22 / 55



∙ Notations: Let I = {i1, i2, . . . , ik} and J = {j1, . . . , jl} be ordered
sets/sequences. Then xI denotes (xi1 , . . . , xik )

⊤, and ΣIJ denotes⎛⎝𝜎i1j1 𝜎i1j2 . . . 𝜎i1j1
. . .

𝜎ik j1 𝜎ik j2 . . . 𝜎ik jl

⎞⎠, where 𝜎ij is the (i , j)th element of Σ.

23 / 55



Marginal distribution

∙ The marginal distribution of a Gaussian distribution is also a
Gaussian distribution.

∙ Specifically, we partition {1, . . . , d} into two disjoint subsets I1 and
I2 with n1 and n2 elements respectively, and let

Yi = YIi , 𝜇i = 𝜇Ii , Σij = ΣIi Ij .

∙ Then the marginal distribution of Y1 is

f1(y1) = N(y1;𝜇1,Σ11). (3)

24 / 55



Conditional distribution

∙ The conditional distribution of a Gaussian distribution is also a
Gaussian distribution.

∙ Specifically, the distribution of Y2 given Y1 = y1 is

f2|1(y2|y1) = N(y2;𝜇2 +Σ21Σ
−1
11 (y1 − 𝜇1),Σ22 − Σ21Σ

−1
11 Σ12). (4)

∙ We often drop the subscripts in f1 and f2|1 when there is no
confusion.

25 / 55



Example. Bivariate Gaussian

∙ Let Y1 and Y2 be the returns for two investments. They are known
to have a joint distribution(︂

Y1

Y2

)︂
∼ N

(︂(︂
−1
−2

)︂
,

(︂
1 2
2 5

)︂)︂
.

∙ Then the marginal distributions are

Y1 ∼ N(−1, 1), Y2 ∼ N(−2, 5).

∙ The conditional distribution of Y1 given Y2 = 3 has mean
−1 + 2 · 1

5 · (3− (−2)) = 1 and variance 1− 2 · 1
5 · 2 = 1

5 , that is,

Y1 | Y1 = 3 ∼ N(1, 1/5).

The conditional distribution of Y2 given Y1 = 2 has mean
−2 + 2 · 1

1 · (2− (−1)) = 4 and variance 5− 2 · 1
1 · 2 = 1, that is,

Y2 | Y1 = 2 ∼ N(4, 1).

26 / 55



Example. Trivariate Gaussian

∙ Let Y1, Y2, Y3 be the returns for three investments. They are
known to have a joint distribution⎛⎝Y1

Y2

Y3

⎞⎠ ∼ N

⎛⎝⎛⎝−1
−2
1

⎞⎠ ,

⎛⎝1 2 1
2 5 2
1 2 4

⎞⎠⎞⎠ .

∙ The conditional distribution of Y1,Y2 given Y3 = 2 has mean(︂
−1
−2

)︂
+

(︂
1
2

)︂
(4)−1(2− 1) =

(︂
−3/4
−3/2

)︂
, and covariance matrix(︂

1 2
2 5

)︂
−
(︂
1
2

)︂(︀
4
)︀−1 (︀

1 2
)︀
=

(︂
3/4 3/2
3/2 4

)︂
, thus

(︂
Y1

Y2

)︂ ⃒⃒⃒⃒
Y3 = 2 ∼ N

(︂(︂
−3/4
−3/2

)︂
,

(︂
3/4 3/2
3/2 4

)︂)︂

27 / 55



Gaussian Processes (GPs)

A generalization of multivariate Gaussians

∙ Specifically, a Gaussian process (GP) is a collection of random
variables such that any finite subset of which follows a
(multivariate) Gaussian distribution.

∙ Recall: if (Y1, . . . ,Yn) follows a multivariate Gaussian distribution,
then any subset of them follows a multivariate Gaussian
distribution.

⇒ a multivariate Gaussian distribution is a GP.

28 / 55



Mean and kernel

∙ A GP can be specified in terms of the mean function m and the
covariance function (aka kernel) k , defined by

m(Y ) = E(Y ),

k(Y ,Y ′) = cov(Y ,Y ′),

where Y and Y ′ are any two random variables in the GP

∙ For example, if the GP under consideration is a multivariate
Gaussian Y = (Y1, . . . ,Yn)

⊤ ∼ N(𝜇,Σ), then

m(Yi ) = 𝜇i ,

k(Yi ,Yj) = 𝜎ij .

29 / 55



GPs as Distributions on Functions

∙ In many cases, each random variable in a GP can be considered as
the output on an input.

∙ In particular, we often consider a GP {Y (x) : x ∈ Rd}, where x
denotes an input feature vector, and Y (x) denotes the output for x.

∙ If we define a random function F such that F (x) is Y (x), then the
GP is the probability distribution for F , and we write

F ∼ GP(m, k),

where m and k are the mean function and the covariance function
of the GP.

30 / 55



∙ For example, consider Y ∼ N(𝜇, 𝜎2). This can be viewed as a
distribution of real-valued functions defined on a set {x1} with a
single feature vector, where the PDF of a function f defined on
{x1} is

p(f ) =
1√
2𝜋𝜎

e−
(f (x1)−𝜇)2

2𝜎2 .

∙ Similarly, if Y = (Y1, . . . ,Yn)
⊤ ∼ N(𝜇,Σ), then it can be viewed

as a distribution of real-valued functions defined on n feature
vectors {x1, . . . , xn}.

31 / 55



∙ The covariance function k(Y (x),Y (x′)) is then a function of x and
x′ and often simply written as k(x, x′).

∙ Intuitively, the kernel controls how the outputs for x and x′ are
related with each other.

∙ As in SVMs, the choice of the kernel is important in GPs.

32 / 55



GP Regression

Noise-free observation model

∙ Consider a training set D = (x1, y1), . . . , (xn, yn) ∈ Rd × R.
∙ In the noise-free GP model, we assume that D is generated as

follows

sample f from GP(m, k),
for each input x1, . . . , xn, observe

yi = f (xi ).

∙ We want to make predictions on x′1, . . . , x
′
t .

∙ Note: we assume xi ’s and x′i ’s are all different.

33 / 55



∙ Notations

notation meaning

X matrix with x⊤i as the ith row

X′ matrix with x′i
⊤ as the ith row

𝜇X (m(x1), . . . ,m(xn)⊤; 𝜇X′ similarly defined
Y (Y (x1), . . . ,Y (xn))⊤

y (y1, . . . , yn)
⊤

Y ′ (Y (x′1), . . . ,Y (x′t))
⊤

KX,X′ matrix with k(xi , x
′
j) as the (i , j)th entry

here X and X′ can be any two matrices

34 / 55



Prediction
∙ The joint distribution of Y and Y ′ is(︂

Y
Y ′

)︂
∼ N

(︂(︂
𝜇X

𝜇X′

)︂
,

(︂
KX,X KX,X′

KX′,X KX′,X′

)︂)︂
.

∙ The predictive distribution of Y ′ is

Y ′ | X′,X, y ∼ N
(︀ posterior mean⏞  ⏟  
𝜇X′
t×1

+ KX′,X
t×n

K−1
X,X

n×n

(y − 𝜇X)
n×1

, (5)

posterior covariance⏞  ⏟  
KX′,X′

t×t
− KX′,X

t×n
K−1
X,X

n×n

KX,X′

n×t

)︀
. (6)

∙ Let (𝛼1, . . . , 𝛼n)
⊤ = K−1

X,X(y − 𝜇X), then for any x′, its posterior
mean is

f (x′) = 𝜇x′ +
n∑︁

i=1

𝛼ik(x
′, xi ).

35 / 55



Evolution of noise-free GP with m = 0 and k(x, x′) = exp
(︁
− ‖x−x′‖2

2

)︁
n = 1 n = 2 n = 3 n = 20

∙ Good training set performance with all training set R2 values nearly 1.

∙ Interpolation performance improves as n increases, but extrapolation performance
becomes worse; in addition uncertainty estimates are often nearly 0 and not useful.

36 / 55



Noisy observation model

∙ In general, the observed value y is only a noisy observation of the
true value.

∙ The noisy observation model is the same as the noise-free model,
except that yi is not f (xi ), but

y = f (x) + 𝜖,

where 𝜖 ∼ N(0, 𝜎2), and 𝜎2 is an unknown constant.

37 / 55



∙ The predictive distribution is

Y ′ | X′,X, y ∼ N
(︀ posterior mean⏞  ⏟  
𝜇X′
t×1

+ KX′,X
t×n

(KX,X + 𝜎2I )−1

n×n
(y − 𝜇X)

n×1
, (7)

posterior covariance⏞  ⏟  
KX′,X′

t×t
− KX′,X

t×n
(KX,X + 𝜎2I )−1

n×n
KX,X′

n×t

)︀
. (8)

38 / 55



Evolution of noisy GP with m = 0, k(x, x′) = exp
(︁
− ‖x−x′‖2

2

)︁
and 𝜎2 = 0.01.

n = 1 n = 2 n = 3 n = 20

∙ Incorporating noise in the observation leads to weaker training set performance, but
better confidence intervals and better extrapolation performance.

39 / 55



Evolution of noisy GP with m = 0, k(x, x′) = exp
(︁
− ‖x−x′‖2

0.02

)︁
and 𝜎2 = 0.01.

n = 1 n = 2 n = 3 n = 20

∙ Using an RBF kernel with a smaller length scale leads to good interpolation and
extrapolation performance; and the uncertainty estimates are good, though slightly too
large.

Question: Can we learn 𝜎2 and other hyperparameters from data?

40 / 55



Model Selection

∙ The problem of choosing the hyperparameters of a GP model is a
problem of model selection, thus we can use techniques such as
cross-valiation.

∙ Let 𝜙 be the learnable parameters of the mean function m and the
kernel function k, and the observation noise variance 𝜎2. We can
choose 𝜙 by maximizing the likelihood function

L(𝜙) = p(y | X,m, k) = N(y;𝜇X,KX,X). (9)

∙ The likelihood function measures the compability between 𝜙 and
the data.

∙ Various numerical optimization algorithms can be used to
maximize the likelihod function (details beyond this course).

41 / 55



Scaled RBF kernel c exp(−(x− x′)2/(2ℓ2)), m = 0

c = 1, ℓ = 0.1, 𝜎2 = 0.01 c = 1, ℓ = 0.335, 𝜎2 = 0.00821 c = 2.435, ℓ = 0.335, 𝜎2 = 0.00821

Hyperparameters in red are learned.

42 / 55



Commonly-used Kernels

∙ Not every function k(x, x′) can be used as a kernel function in
SVMs; this is true in GPs too.

∙ Using the right kernel is often important to make GPs work.

∙ In practice, we can try commonly used kernels, or try kernels
constructed using them.

43 / 55



Constant kernel

∙ The constant kernel is defined as

k(x, x′) = c , (10)

where c ≥ 0 is a constant.

∙ This is not really an interesting kernel on its own, but is useful
when constructing new kernels using known kernels.

44 / 55



Linear kernel

∙ The linear kernel is defined as

klinear(x, x
′) = x⊤x′ + 𝜎2

0.

The linear kernel is said to be homogeneous is 𝜎0 = 0 and
inhomogeneous otherwise.

∙ The posterior mean function is a linear function, thus this kernel is
suitable if the output is approximately linear in the features.

45 / 55



Squared exponential kernel

∙ The squared exponential kernel (aka RBF kernel) is defined as

kSE(x, x
′) = exp

(︂
−‖x− x′‖2

2ℓ2

)︂
,

where ℓ is called the characteristic length scale.

∙ When the distance between x and x′ decreases, the kernel value
increases ⇒ more similar inputs lead to more correlated outputs.

46 / 55



scaled RBF kernel c exp
(︁
−(x − x′)2/(2ℓ2)

)︁
c = 2.435, ℓ = 0.335, 𝜎2 = 0.00821

scaled linear kernel c(x⊤x′ + 𝜎2
0)

c = 3.31, 𝜎0 = 0.509, 𝜎2 = 0.262

Hyperparameters in red are learned; m = 0.

47 / 55



Matérn kernel

∙ The Matérn kernel is defined as

kMatern(x, x
′) =

21−𝜈

Γ(𝜈)

(︃√
2𝜈‖x− x′‖

ℓ

)︃𝜈

K𝜈

(︃√
2𝜈‖x− x′‖

ℓ

)︃
,

with positive parameters 𝜈 and ℓ, where Γ is the Gamma function,
and K𝜈 is the modified Bessel function of the second kind.

∙ K𝜈(x) ∼
√︀
𝜋/(2x) exp(−x) as x → ∞.

48 / 55



49 / 55



scaled RBF kernel c exp
(︁
−(x − x′)2/(2ℓ2)

)︁
c = 2.435, ℓ = 0.335, 𝜎2 = 0.00821

scaled Matern kernel ckMatern(x, x
′)

c = 0.671, 𝜈 = 1.5, ℓ = 0.344, 𝜎2 = 0.00779

Hyperparameters in red are learned; m = 0.

50 / 55



Constructing New Kernels

∙ If k1 and k2 are kernels, then

k(x, x′) = ck1(x, x′) is a kernel for any c > 0.
k(x, x′) = k1(x, x′) + k2(x, x′) is a kernel.
k(x, x′) = k1(x, x′)k2(x, x′) is a kernel.
k(x, x′) = k1(x, x′)p is a kernel.

51 / 55



GP Regression in sklearn

from sklearn.datasets import fetch_california_housing

from sklearn.gaussian_process import GaussianProcessRegressor

from sklearn.gaussian_process.kernels import WhiteKernel,

ConstantKernel, Matern

from sklearn.model_selection import train_test_split

X, y = fetch_california_housing(return_X_y=True)

X_tr, X_ts, y_tr, y_ts = train_test_split(X, y, test_size=0.8,

random_state=42)

# train and test a GP with scaled Matern kernel and noisy obs

kernel = ConstantKernel()*Matern()+WhiteKernel()

gpr = GaussianProcessRegressor(kernel=kernel, random_state=0)

gpr.fit(X_tr, y_tr)

print(gpr.score(X_ts, y_ts))

sklearn uses zero-mean GPs. By default, kernel hyperparameters are
optimized during fitting.

52 / 55



GP Classification

∙ GPs can be used for classification as well.

∙ The theory is much more involved than that for regression and is
beyond this course.

∙ However, there are many GP libraries, and implementing a GP
classifier is easy.

∙ As in regression, choosing the right kernel is a main consideration
in getting the most out of a GP classifier.

53 / 55



GP Classification in sklearn

from sklearn.datasets import load_digits

from sklearn.gaussian_process import GaussianProcessClassifier

from sklearn.gaussian_process.kernels import WhiteKernel,

ConstantKernel, Matern

from sklearn.model_selection import train_test_split

X, y = load_digits(return_X_y=True)

X_tr, X_ts, y_tr, y_ts = train_test_split(X, y, test_size=0.8,

random_state=42)

# train and test a GP with scaled Matern kernel and noisy obs

kernel = ConstantKernel()*Matern()+WhiteKernel()

gpr = GaussianProcessClassifier(kernel=kernel, random_state=0)

gpr.fit(X_tr, y_tr)

print(gpr.score(X_ts, y_ts))

54 / 55



What You Need to Know

∙ Bayesian learning
∙ Gaussian processes (GPs)

GPs as a generalization of multivariate Gaussians: mean function
and kernel function
GPs as distributions on functions
computation of marginal distributions and conditional distributions

∙ GP regression

noisy-free and noisy observation models
prediction
model selection (maximum likelihood learning of hyperparameters)

∙ GP classification

∙ Implementing GPs in sklearn

55 / 55


