Bayesian Methods

Nan Ye

School of Mathematics and Physics
The University of Queensland

1/55

Where Are We Heading to?

How to build good ML models
® Making use of a crowd = Week 7 Ensemble methods

each of us is a biological prediction model trained on different datasets...

® Using a neural network = Week 8 and 9 Neural networks

brain-inspired models, some are good for images...

Making a robust model = Week 10 Robust machine learning

malicious users, outliers, ...

Asking for explanations = Week 11 Interpretable machine learning

...let’s ask the machines for explanations...

Exploiting prior beliefs = Week 12 Bayesian methods

2/55

Frequentist vs Bayesian

DID THE SUN JUST EXPLODE?

(ITS NIGHT, 50 WERE NOT SURE,)

THIS NETRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

(THEN, TROLLS TWo DKE. IF THEY

BOTH COME UP Six, ITUES TOUS.
OTHERWISE, ITTELLS THE TRUH.

FREQUENTIST STATISTICIAN® CAYEBIAN STRTISTIOAN:

THE PROBABLITY OF THS RESULT

HAPPENING BY CHANCE 15 5=0027. BET YOU $50
SNCE p<005, T CONIUDE T HASNT
THAT THE 5UN HAS EXPLODED:]

[aal

3/55

® \We are often interested in learning probabilistic models of a given
dataset

m a probabilistic model describes a probabilistic process that generates
the data
m e.g. Gaussian distributions form a class of probabilistic model for
real-valued observations
® The frequentist approach picks a probabilistic model that best fits
the dataset
m e.g., naive Bayes classifier
® The Bayesian approach assigns a weight to each candidate
probabilistic model by using the Bayes' rule to combine

m prior subjective assessment on how likely the model is, and
m how well the model explains the dataset.

4/55

Bayesian Learning

Frequentist learning

® Suppose we have a dataset D, and we have a family of probabilistic
models {p(- | 0) : 6 € O}, where 0 is the parameter vector of
p(D |), and © is the parameter space.

® In the frequentist approach, we often learn a single model p(- |)
by maximizing the likelihood

maxp(D | 0),

where p(D |) is the probability that D is generated by the model
p(- | 0), and often called the likelihood.

® The likelihood is a measure of the compatibility between the model
6 and the data D.

5/ 55

Bayes’ Theorem (aka Bayes’ law or Bayes' rule)
® For two events A and B, if P(B) # 0, then

P(B | A)P(A)
® |nterpretation
m B: the observation/evidence
P(A): the prior, or the initial belief for A
P(B | A): the likelihood
P(A | B): the posterior, or the belief for A after observing B

6 /55

Bayesian learning

® In the Bayesian approach, instead of learning a single model, we
learn a distribution on all the models in ©.

e Specifically, we assume a prior distribution p(f) on ©, and given a
dataset D, we compute a posterior

posterior prior likelihood
—— AN
p(61 D) = p(6)p(D | 6)/Z x p(8)p(D | 6).

where the normalization constant Z is

Zeee p()p(D | 6), if p(0) is discrete,
Jo P(8)p(D |)do, if p(0) is continuous.

® The posterior distribution p(6 | D) can be used in various ways
when performing inference.

7/55

Inference problems

e Compute the MAP (maximum a posterior) model:
Omap = argmax p(6 | D).
0cO
e Compute the (posterior) predictive distribution:
ply | D.x) = [by |6.3)p(0 | D),

e Compute posterior mean and variance of Y given x:

posterior mean py = E(Y | x,D) = /yp(y | D, x)dy

posterior variance 02 = Var(Y | x, D) = /(y — 1x)?p(y | D, x)dy

8 /55

Bayesian method as an ensemble method

data

prior

posterior

«—— test data

® Learning (computing posterior): construct a weighted ensemble of
(often infinitely many) models using the Bayes' rule .

® Prediction: aggregate the ensemble’s predictions (e.g., by
computing the weighted average prediction).

9/55

Example. Learning the probability of Heads

® Peter has two coins: the probability of Heads for one is 0.5, and
0.8 for the other. He chooses a coin, tosses it twice and observes
one Head and one Tail. What's the probability of Heads of the
chosen coin?

® The parameter space is © = {0.5,0.8}, the dataset D is a
sequence of two Heads, and the likelihood is

p(D | 6) = 0(1 —).

10 / 55

The frequentist solution
® We have

p(D | 6 = 0.5) = 0.25,
p(D |6 =0.8) = 0.16.

® Thus # = 0.5 is more compatible with the observations, and we
may believe that the probability of Heads for the chosen coin is 0.5.

11/ 55

The Bayesian solution

® We heard from a close friend of Peter that he likes the biased coin
and chooses it with probability 0.9, that is, our prior is
p(0 = 0.5) =0.1 and p(6 = 0.8) = 0.9.

® We have p(# = 0.5)p(D | # = 0.5) = 0.025, and
p(0 =0.8)p(D | = 0.8) = 0.144, thus the posterior distribution is

25/169 6 =05
p(o| D)=
144/169 6 = 0.8.

The MAP model is 8 = 0.8, thus we may believe that the
probability of Heads for the chosen coin is 0.8.

12 / 55

® The posterior mean of # is 0.5 x 25/169 + 0.8 x 144/169 = 0.76.
The standard deviation of 6 given D is 0.18 (exercise).

® The probability distribution of the outcomes of next two tosses is
outcome HH HT TH TT
p 0.5823 0.1733 0.1733 0.0711

13 / 55

Bayesian regression and classification
® |n Bayesian regression and classification methods,

m the probabilistic model p(D | 0) is often much more complex than a
simple Bernoulli distribution, and
m the prior p(#) is much more complex than a discrete distribution.

® Two challenges

m Specifying a good prior can be hard.
m The inference problems are often computationally hard.

® \We focus on the Gaussian processes, which

m support a wide range of priors on all possible functions,
m allow elegant algorithms for the inference problems.

14 / 55

From SVM to Gaussian Process

Support vector regression
® Recall: in binary support vector classifier, the discriminant function
is of the form

f(x) = Z a;iyik(xi, x).

x is predicted to be positive if f(x) > 0 and negative otherwise.

® SVMs can be used for regression too, and the regressor is of the
form

f(x) = Za;k(x;, x).

15 / 55

Gaussian processes (GPs)

® Gaussian processes also produce regression estimates of the same
form as SVMs:

f(x) = Za;k(x;, x).

® However, there are a few important differences

m SVM predicts a single estimated value, but GP predicts a
distribution on the possible values.

m in SVM, the kernel hyperparameters are often tuned by using
methods like cross validation to choose the best values from a small
set of candidate values; in GP, the hyperparameters can be
optimized over all possible values using numerical optimization
methods.

16 / 55

Example. Learning the sine function

10 g —— true function

@ training data
05
0.0
-0.5
-1.0

L]
—].I.D —C;.S EIIO DIS 1I0 1|5 IIG

® Y =sin(27x) + ¢, where e ~ N(0,0.12).
e Training set: x sampled from [0, 1]
® Prediction: x sampled from [-1, 2]

= we can observe how well an algorithm interpolates and

extrapolates.

17 / 55

15 4
= true function = true function
@ training data E) @ training data (R2=0.99)
10 B c
+ predictions + predictions
2 e 95% confidence interval
05
1
oo 0
-1
-05
-2
-1.0 -3
-4
-15 T T T T T T T T T T T T T T
-10 -05 00 05 10 15 20 -10 -05 00 05 10 15 20

SVM (RBF kernel with v = 2000) Gaussian process (RBF kernel)

18 / 55

Gaussian Distributions 364+ 102

Univariate Gaussian distribution

® A random variable Y is said to follow a univariate Gaussian
distribution N(u, o?) if its probability density function (PDF) is

) = e (VD) 1)

210 202

® We often write this as Y ~ N(u,0?), and use N(y; 1, 0?) to
denote the PDF.

19 / 55

PDF of a Gaussian distribution

20 / 55

Multivariate Gaussian distribution

® A random vector Y = (Yi,...,Y;,)" is said to follow a
multivariate Gaussian distribution N(u,X) with mean p and
covariance matrix X if its PDF is

1 1 .
fly) = T (—2(>/—u)TZ (y—u)>, (2)

where we use the notation |A| to denote the determinant of a
matrix A.

e We often write this as Y ~ N(u,X), and use N(y; u, X) to denote
the PDF.

21/ 55

0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

PDF of a bivariate Gaussian

22 / 55

¢ Notations: Let | = {i1,i2,...,ix} and J = {j1,...,Ji} be ordered

sets/sequences. Then x; denotes (xj, ... 7x,-k)T, and ¥, denotes
Oiji Oija +++ Oijs

, Where ¢j; is the (i, j)th element of X.

Oikji Oikje - +++ Oy

23 / 55

Marginal distribution

® The marginal distribution of a Gaussian distribution is also a
Gaussian distribution.

¢ Specifically, we partition {1,...,d} into two disjoint subsets /; and
I with ny; and n elements respectively, and let

Y=Y, Bi = p, Y=Yy

® Then the marginal distribution of Y7 is

fi(y1) = N(y1; p1, ¥11). (3)

24 / 55

Conditional distribution

® The conditional distribution of a Gaussian distribution is also a
Gaussian distribution.

® Specifically, the distribution of Y5 given Y1 =y is

fon(y2lyr) = N(y2; p2 + ZanTp7 (y1 — 1), Too — Tn T3 Tao). (4)

® We often drop the subscripts in fi and f5); when there is no
confusion.

25 / 55

Example. Bivariate Gaussian

® let Y7 and Y3 be the returns for two investments. They are known
to have a joint distribution

Y1 -1 1 2
(W)~ ()G 9)
® Then the marginal distributions are

Yy ~ N(-1,1), Yy ~ N(~2,5).

® The conditional distribution of Y; given Y5 = 3 has mean
—1+2-1-(3—(-2))=1and variance 1 —2- 1 -2 =1, that is,

Y1 | Yy =3~ N(1,1/5).

The conditional distribution of Y, given Y; = 2 has mean
—2+2-1-(2—(-1)) =4 and variance 5 — 2 } - 2 =1, that is,

Ya| Vi =2~ N(4,1).

26 / 55

Example. Trivariate Gaussian

® let Y1, Y2, Y3 be the returns for three investments. They are
known to have a joint distribution

Y; 1 121
Yol~N{[-2],[2 5 2
Ys 1 12 4

® The conditional distribution of Y7, Y> given Y3 = 2 has mean

(:;) + @) (4)12-1)= (:g?g) and covariance matrix
(- (D@ a 2= (38 3

(W)l =2=m((5)- Gz)

27 / 55

Gaussian Processes (GPs)

A generalization of multivariate Gaussians

® Specifically, a Gaussian process (GP) is a collection of random
variables such that any finite subset of which follows a
(multivariate) Gaussian distribution.

® Recall: if (Y1,...,Y},) follows a multivariate Gaussian distribution,
then any subset of them follows a multivariate Gaussian
distribution.

= a multivariate Gaussian distribution is a GP.

28 / 55

Mean and kernel

® A GP can be specified in terms of the mean function m and the
covariance function (aka kernel) k, defined by

m(Y) = E(Y),
k(Y,Y') =cov(Y,Y'),

where Y and Y’ are any two random variables in the GP

® For example, if the GP under consideration is a multivariate
Gaussian Y = (Y1,..., Yn)| ~ N(u,X), then

m(yl) = i,
k(Y Yj) = ajj.

29 / 55

GPs as Distributions on Functions

® In many cases, each random variable in a GP can be considered as
the output on an input.

® In particular, we often consider a GP {Y(x) : x € R}, where x
denotes an input feature vector, and Y(x) denotes the output for x.

® If we define a random function F such that F(x) is Y(x), then the
GP is the probability distribution for F, and we write

F ~ GP(m, k),

where m and k are the mean function and the covariance function
of the GP.

30/ 55

For example, consider Y ~ N(u,c2). This can be viewed as a
distribution of real-valued functions defined on a set {x;} with a
single feature vector, where the PDF of a function f defined on

{Xl} is

1 (Fxp)—n)?
e 2052

p(f) =

2mo

Similarly, if Y = (Y1,...,Ys)" ~ N(u,X), then it can be viewed
as a distribution of real-valued functions defined on n feature
vectors {X1,...,Xp}.

31/ 55

® The covariance function k(Y(x), Y(x')) is then a function of x and
x" and often simply written as k(x,x’).

e Intuitively, the kernel controls how the outputs for x and x’ are
related with each other.

® As in SVMs, the choice of the kernel is important in GPs.

32/ 55

GP Regression

Noise-free observation model

e Consider a training set D = (x1,y1),...,(Xn, ¥n) € RY X R.

® |n the noise-free GP model, we assume that D is generated as
follows

m sample f from GP(m, k),
m for each input xq,...,x,, observe

yi = f(x).

® We want to make predictions on X, ..., X}.

® Note: we assume x;'s and xj-'s are all different.

33 /55

® Notations

notation meaning

X matrix with x,-T as the ith row

X’ matrix with x:-T as the ith row

X (m(x1),...,m(xn)"; px: similarly defined
Y (Y(x1),..., Y(x,))"

y (yla"'vyn)T

Yo (Y YT

Kx x/ matrix with k(x,-,xj-) as the (7, j)th entry

here X and X' can be any two matrices

34 /55

Prediction
® The joint distribution of Y and Y’ is

(v) = () (65 k)
Y’ px) \Kxx Kxx))
® The predictive distribution of Y’ is

posterior mean

Y’ | x/7X7y ~ N(IUX/ + KX’ XKX X(y /JX) (5)

tx1 tXn pxn nx1

posterior covariance

~1
Kx' x1 — KX/,xKx,xKx,X/)- (6)
tXt tXn pxn nXt
® Let (ag,...,an)! = K)Z;((y — ux), then for any x’, its posterior

mean is
n
f(x') = py + Za;k(x’,x;).
i=1

35/ 55

: : : _ N _ lIx=x"|1?
Evolution of noise-free GP with m = 0 and k(x,x’) = exp (ff)
n=1 n=2 n=3 n=20

20 — wue tncton — vue tncton — wue uncton Bl — e ncton
o toinng cata 2 o taining data (R2-100) o taining data (R2-100) o taining dota (12-099)
B ctions predicons pedictons 0] e« predctions
0 95% confdence nenval 95% confdence nerval 95% confdence nerval 95% confdence nerval
B 0 4
00 o
150
o
20
15 2 20
To 95 o0 o5 10 15 20 To <95 o0 o5 10 15 20 To <5 o0 o5 10 15 20 To <5 o0 os 10 15 20
— vue ncton — vue unction — tue uncton 0 . — true function.
o tanngcaa o taining data (R2-100) o taining data (R2-100) o training data (12-0.9)
predictions 10{ 4 pedictions pedictions pedictions
95% confdence nerval s 95% confdence nerval o5t confdence el | o 95% confdence nerial
T | 03 g
o, 00
i,
00 o,
o5
s
10 E 10 -
T 2 oi 96 o8 b T 2 or o6 o b % 2 or o6 o 1b % o2 or g6 o 1o

® Good training set performance with all training set R? values nearly 1.

® |Interpolation performance improves as n increases, but extrapolation performance
becomes worse; in addition uncertainty estimates are often nearly 0 and not useful.

36 / 55

Noisy observation model
® In general, the observed value y is only a noisy observation of the
true value.
® The noisy observation model is the same as the noise-free model,
except that y; is not f(x;), but

y =f(x)+e

where € ~ N(0,02), and 02 is an unknown constant.

37 /55

® The predictive distribution is

posterior mean

Y | X, X,y ~ N(ux + Kex(Kxx + 0207y — x), (7)

tx1 txn nxn nx1

posterior covariance

KX/,X’ — KX/,X(KX,X + 02/)_1Kx7x/). (8)

tXt tXn nxn nXt

38 /55

s
Evolution of noisy GP with m = 0, k(x,x") = exp (—M) and ¢ = 0.01.

n=1 n=2 n=3 n=20

— e uncton

o weining dats 2 o waining dets (12=0.69)

presictons
5% confience inteval

o waining dets (12=053)
° pesicon: 2
5% confidence interval

o waining dets (R2=100)
T predicons N
5% confidence interval

predicons
e 95% confidence nterval

o o
1
a
4
o
2
= o
& — e funcion 20 funcion o e foncton
o taining dota (12100 o taining dota (12-059) o taining dota (12-059)

° presicons

° predicons
5% confience nteval

predicons 15
= S confienceinteral | o

5% confidence nterval

05 00
00
00
o5
s s
10
10 10 v 0

® |ncorporating noise in the observation leads to weaker training set performance, but
better confidence intervals and better extrapolation performance.

39 / 55

2
Evolution of noisy GP with m = 0, k(x,x’) = exp (JJ%J—) and 02 = 0.01.

n=1 n=2 n=3 n=20

— e function

— o

e fonction.
o traing data (12-099)
cions

e 95% confience incerval

e function — true functon
o training data (R2-100) 10 o traming ast (12-099)

ictions e - pesictions
e 5% contience intenal s e 95 contience inceral

® Using an RBF kernel with a smaller length scale leads to good interpolation and
extrapolation performance; and the uncertainty estimates are good, though slightly too
large.

Question: Can we learn 02 and other hyperparameters from data?

40 / 55

Model Selection

The problem of choosing the hyperparameters of a GP model is a
problem of model selection, thus we can use techniques such as
cross-valiation.

Let ¢ be the learnable parameters of the mean function m and the
kernel function k, and the observation noise variance o2. We can
choose ¢ by maximizing the likelihood function

L(p) = p(y | X, m, k) = N(y; pux, Kx x)- (9)

The likelihood function measures the compability between ¢ and
the data.

Various numerical optimization algorithms can be used to
maximize the likelihod function (details beyond this course).

41 /55

Scaled RBF kernel cexp(—(x —x')2/(2¢?)), m =0

— true function — true function ¢ — true function
® training data (R2=0.99) 2z @ training data (R2=0.99) 3 ® training data (R2=0.99)
+ predictions + pregictions + pegictions
= 95% confidence interval 1 = 95% confidence interval 2 = 95% confidence interval
1
o

20

-0 -0s 00 os 10 15 20 -0 -0s 00 os 10 15

c=1,0=033502 =0.00821 c=2.435¢=0.335, 02 = 0.00821

-0 -0s 00 os 10 15 20

Hyperparameters in red are learned.

42 /55

Commonly-used Kernels

® Not every function k(x,x’) can be used as a kernel function in
SVMs; this is true in GPs too.
® Using the right kernel is often important to make GPs work.

® In practice, we can try commonly used kernels, or try kernels
constructed using them.

43 /55

Constant kernel

® The constant kernel is defined as
k(x,x') = c, (10)

where ¢ > 0 is a constant.

® This is not really an interesting kernel on its own, but is useful
when constructing new kernels using known kernels.

44 / 55

Linear kernel

® The linear kernel is defined as
/ T/ 2
Kiinear(X,x") = x ' x' 4 0.

The linear kernel is said to be homogeneous is oo = 0 and
inhomogeneous otherwise.

® The posterior mean function is a linear function, thus this kernel is
suitable if the output is approximately linear in the features.

45 / 55

Squared exponential kernel

® The squared exponential kernel (aka RBF kernel) is defined as

x — %' 2
kse(x,x') = exp <—H2£2”> ,

where £ is called the characteristic length scale.
® When the distance between x and x’ decreases, the kernel value

increases = more similar inputs lead to more correlated outputs.

46 / 55

= true functicn

® training data (R2=0.59)
+ predictions

[95% confidence interval

true function 4
training data (R2=0.99)

L]
+ predictions
[95% confidence interval 2

0
-2
4
1o 05 00 05 10 15 20 1o 05 00 05 10 15 20
scaled RBF kernel cexp (—(x — x')2/(2£2)) scaled linear kernel c(x ' x’ + ag)
¢ = 24350 = 0.335,02 = 0.00821 c = 33L,00 = 0.509,0° = 0.262

Hyperparameters in red are learned; m = 0.

47 / 55

Matérn kernel

® The Matérn kernel is defined as

21 (muwn)”K (M)
o)\ o0)

kMatern (X, X/) =

with positive parameters v and ¢, where [is the Gamma function,
and K, is the modified Bessel function of the second kind.

* K,(x) ~ +/m/(2x) exp(—x) as x — o0.

48 / 55

49 / 55

= true function

® training data (R2=0.99)
+ predictions

 95% confidence interval

15

10

05

= true function

@ training data (R2=0.99)
+ predictions

[95% confidence interval

1o 05 00 05 10 15 20

scaled RBF kernel cexp (—(x - x’)z/(2£2))

¢ = 2.435,¢ = 0.335,0° = 0.00821

1o 05 00 05 10 15 20
scaled Matern kernel ckpatern (X,)

c = 0671, v = 15,0 = 0.344, 0> = 0.00779

Hyperparameters in red are learned; m = 0.

50 / 55

Constructing New Kernels

e |f k; and k> are kernels, then
m k(x,x') = cki(x,x’) is a kernel for any ¢ > 0.

m k(x,x") = ki(x,x") + ka(x,x") is a kernel.
B k(x,x") = ki(x,x")ka(x,x") is a kernel.
m k(x,x") = ki(x,x")? is a kernel.

51 /55

GP Regression in sklearn

from sklearn.datasets import fetch_california_housing

from sklearn.gaussian_process import GaussianProcessRegressor

from sklearn.gaussian_process.kernels import WhiteKernel,
ConstantKernel, Matern

from sklearn.model_selection import train_test_split

X, y = fetch_california_housing(return_X_y=True)

X_tr, X_ts, y_tr, y_ts = train_test_split(X, y, test_size=0.8,
random_state=42)

train and test a GP with scaled Matern kernel and noisy obs

kernel = ConstantKernel () *Matern()+WhiteKernel()

gpr = GaussianProcessRegressor(kernel=kernel, random_state=0)

gpr.fit(X_tr, y_tr)

print(gpr.score(X_ts, y_ts))

sklearn uses zero-mean GPs. By default, kernel hyperparameters are
optimized during fitting.

52 /55

GP Classification

GPs can be used for classification as well.

The theory is much more involved than that for regression and is
beyond this course.

However, there are many GP libraries, and implementing a GP
classifier is easy.

As in regression, choosing the right kernel is a main consideration
in getting the most out of a GP classifier.

53 / 55

GP Classification in sklearn

from sklearn.datasets import load_digits

from sklearn.gaussian_process import GaussianProcessClassifier

from sklearn.gaussian_process.kernels import WhiteKernel,
ConstantKernel, Matern

from sklearn.model_selection import train_test_split

X, y = load_digits(return_X_y=True)

X_tr, X_ts, y_tr, y_ts = train_test_split(X, y, test_size=0.8,
random_state=42)

train and test a GP with scaled Matern kernel and noisy obs

kernel = ConstantKernel()*Matern()+WhiteKernel ()

gpr = GaussianProcessClassifier (kernel=kernel, random_state=0)

gpr.fit(X_tr, y_tr)

print(gpr.score(X_ts, y_ts))

54 / 55

What You Need to Know

Bayesian learning
Gaussian processes (GPs)
m GPs as a generalization of multivariate Gaussians: mean function
and kernel function
m GPs as distributions on functions
m computation of marginal distributions and conditional distributions
GP regression

m noisy-free and noisy observation models
m prediction
m model selection (maximum likelihood learning of hyperparameters)

GP classification

Implementing GPs in sklearn

55 / 55

