
Convolutional Neural Nets (CNNs)

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 32



Applications

∙ CNNs are inspired by how biological vision works.

∙ CNNs are useful for dealing with array inputs in which nearby
values are correlated.

∙ Examples: images, video, sound

2 / 32



Image classification
Krizhevsky, Sutskever, and Hinton, Imagenet classification with deep convolutional neural networks, 2012

3 / 32



Speech recognition

Abdel-Hamid et al., Convolutional neural networks for speech recognition, 2014

4 / 32



Pneumonia detection from chest X-rays

Rajpurkar et al., CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning, 2017

5 / 32



Biological Vision

∙ Hubel & Wiesel (1950s and 1960s) showed that cat and monkey
visual cortices contain neurons that individually respond to small
regions of the visual field.

∙ The firing of a single neuron is affected by a certain region of the
visual space, known as the receptive field of the neuron.

∙ Neighboring cells have similar and overlapping receptive fields.

∙ Some cells can detect edges irrespective of where they occur.

6 / 32



Convolutional Neural Nets (CNNs)

∙ CNNs are multilayer feedforward neural networks

they are MLPs where the weights have been constrained to mimic
how biological vision works

∙ Three architectural ideas

Local receptive fields
Shared weights
Spatial or temporal sub-sampling

These ensure some degree of shift, scale, and distortion invariance.

7 / 32



∙ There are two key building blocks
The convolutional layer, which consists of a number of filters

▶ filters are also called kernels, feature detectors
▶ each filter scans small patches in the input to detect features

The downsampling layer, which reduces the resolution of the image
for learning higher-level features.

8 / 32



Convolution

∙ Convolution in CNNs is not convolution in maths.

∙ Convolution in CNNs is known as cross-correlation, or sliding inner
product in maths.

9 / 32



2D Convolution (in CNN)
∙ Given an N × N input, the convolution operation slides one filter
through the input to extract features

An F × F filter is simply an F × F weight matrix.
We slide the filter over all F × F subarrays.
For each subarray, we compute the weighted sum of its elements
(i.e., the dot product between the filter and the sub-array).
This gives us an (N − F + 1)× (N − F + 1) feature/activation map.

10 / 32



Example. 2x2 filter applied to 4x4 input

input

3 9 2 4

7 7 3 1

0 3 6 9

8 1 2 0

filter

2 2

1 2

11 / 32



input

3 9 2 4

7 7 3 1

0 3 6 9

8 1 2 0

2 2

1 2

output

45 35 17

34 35 32

16 23 32

12 / 32



input

3 9 2 4

7 7 3 1

0 3 6 9

8 1 2 0

2 2

1 2

output

45 35 17

34 35 32

16 23 32

13 / 32



input

3 9 2 4

7 7 3 1

0 3 6 9

8 1 2 0

2 2

1 2

output

45 35 17

34 35 32

16 23 32

14 / 32



In the language of neural nets...

∙ 4x4 input matrix = outputs of 4x4 input neurons

∙ 3x3 output matrix = outputs of 3x3 neurons in the conv. layer

∙ Each output neuron is connected to 4 of the 4x4 input neurons.

∙ The 4 weights are shared for all the output neurons.

input

3 9 2 4

7 7 3 1

0 3 6 9

8 1 2 0

output

45 35 17

34 35 32

16 23 32

15 / 32



Example. 2x2 filter applied to 5x5 input with stride 2

input

3 9 2 4 7

7 3 1 0 3

6 9 8 1 2

0 6 1 8 9

6 7 4 3 2

filter

2 2

1 2

With stride=2, we skip 2 cells each time.

16 / 32



input

3 9 2 4 7

7 3 1 0 3

6 9 8 1 2

0 6 1 8 9

6 7 4 3 2

2 2

1 2

output

37 13

42 35

17 / 32



input

3 9 2 4 7

7 3 1 0 3

6 9 8 1 2

0 6 1 8 9

6 7 4 3 2

2 2

1 2

output

37 13

42 35

18 / 32



input

3 9 2 4 7

7 3 1 0 3

6 9 8 1 2

0 6 1 8 9

6 7 4 3 2

2 2

1 2

output

37 13

42 35

19 / 32



input

3 9 2 4 7

7 3 1 0 3

6 9 8 1 2

0 6 1 8 9

6 7 4 3 2

2 2

1 2

output

37 13

42 35

N × N input, F × F filter with stride S ⇒ output size ⌊N−F
S ⌋+ 1

20 / 32



Zero-padding, dilation and bias
∙ We often pad each side of the input with P zeros (or other
constants)

this allows the filters to scan elements near the borders

∙ Sometimes, in a filter with dilation D, its cells are D cells apart
(D = 1 in previous examples).

∙ N × N input, F × F filter, pad P zeros on each side, dilation D,
stride S ⇒ output size ⌊N+2P−D(F−1)−1

S ⌋+ 1

∙ In general, each filter has a bias term as well.

21 / 32



Convolution beyond 2D

∙ In general, the input is not necessarily a 2D matrix, but can be a
general N-dimensional array (1D, 2D, 3D,...)

∙ Similarly, a filter can be a general M-dimensional array (you can
slide it through the input array as long as M ≤ N).

22 / 32



Convolutional layer

∙ A convolutional layer often has several filters.

∙ Each filter produces a separate activation map.

∙ Filter weights are typically learned from data.

23 / 32



Your Turn

Which of the following statement is correct? (Multiple choice)

(a) A convolutional layer is a special kind of fully connected layer.

(b) Each neuron in a convolutional layer has to be connected to all
input neurons.

(c) Convolutional layer is designed to extract features from array data.

24 / 32



Sub-sampling

∙ Sub-sampling (or pooling) is very similar to convolution.

∙ In average pooling, when we slide the filter through the input, we
simply take the average of the input elements being scanned as the
output.

∙ In max pooling, we replace average by max.

∙ The default stride is equal to the filter size (i.e. we do not pool the
same element twice).

25 / 32



LeNet-5 (1998)

∙ 7 layers (excluding input layer)

∙ Layer 1,3,5 are convolution layers (C1, C3, C5)

∙ Layer 2,4 are sub-sampling layers (S2, S4)

∙ Layer 6 is fully-connected (F6)

∙ Layer 7 is the output layer

LeCun et al., Gradient-based learning applied to document recognition, 1998

26 / 32



LeNet-5 (1998)

∙ Activation function is hyperbolic tangent up to F6.

∙ Output layer uses the Euclidean Radial Basis Function (RBF) units
(each computes the squared distance between the input vector and
the weight vector of the unit).

LeCun et al., Gradient-based learning applied to document recognition, 1998

26 / 32



LeNet-5 (1998)

Convolutional layers
∙ Each convolutional layer has units organized as several 2D arrays.

∙ C1: 6 filters of size 5x5

∙ C3: 16 filters of size 5x5

LeCun et al., Gradient-based learning applied to document recognition, 1998

26 / 32



LeNet-5 (1998)

Sub-sampling/pooling layers
∙ Each sub-sampling layer has units organized as the same number of
2D arrays as previous convolutional layer.

∙ Reduces each 2D array in the previous convolutional layer to a
lower resolution, by taking the average of each non-overlapping 2x2
neighborhood and adding a bias to it.

LeCun et al., Gradient-based learning applied to document recognition, 1998

26 / 32



LeNet-5 (1998)

Trainable using backprop.

LeCun et al., Gradient-based learning applied to document recognition, 1998

26 / 32



Performance

∙ MNIST dataset: 60,000 training examples, 10,000 test examples,
resized to 32x32.

∙ 0.95% error.

27 / 32



Adding distorted training data helps

∙ Additional 540,000 distorted training examples.

∙ Error improved to 0.8%.

28 / 32



Errors made by LeNet5

29 / 32



Variants

∙ Max-pooling is found to work better than average-pooling.

∙ Overlapping pooling is sometimes used.

∙ Rectified linear unit (ReLU, max(0, x)) is now often used instead of
sigmoid units (tanh(x) or 𝜎(x)).

30 / 32



Modern CNNs

∙ Modern CNNs are generally much deeper and are more expressive.

∙ They also make use of various other ideas, such as shortcut
connections, batch normalization, dropout.

∙ Examples: AlexNet, GoogLeNet, ResNet

More in STAT3007 Deep Learning

31 / 32



What You Need to Know

Convolutional neural nets

∙ They are special types of MLPs with sparse connections between
layers.

∙ Three key architectural ideas: local receptive fields, weight sharing,
sub-sampling.

∙ Two special types of layers

Convolutional layers
Sub-sampling layers

32 / 32


