Convolutional Neural Nets (CNNs)

Nan Ye

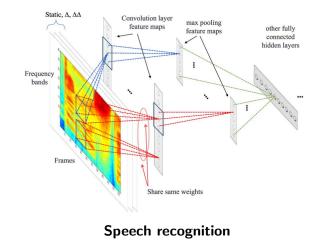
School of Mathematics and Physics The University of Queensland

Applications

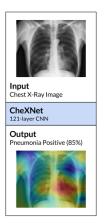
- CNNs are inspired by how biological vision works.
- CNNs are useful for dealing with array inputs in which nearby values are correlated.
- Examples: images, video, sound

Image classification

Krizhevsky, Sutskever, and Hinton, Imagenet classification with deep convolutional neural networks, 2012



Abdel-Hamid et al., Convolutional neural networks for speech recognition, 2014



Pneumonia detection from chest X-rays

Biological Vision

- Hubel & Wiesel (1950s and 1960s) showed that cat and monkey visual cortices contain neurons that individually respond to small regions of the visual field.
- The firing of a single neuron is affected by a certain region of the visual space, known as the receptive field of the neuron.
- Neighboring cells have similar and overlapping receptive fields.
- Some cells can detect edges irrespective of where they occur.

Convolutional Neural Nets (CNNs)

- CNNs are multilayer feedforward neural networks
 - they are MLPs where the weights have been constrained to mimic how biological vision works
- Three architectural ideas
 - Local receptive fields
 - Shared weights
 - Spatial or temporal sub-sampling

These ensure some degree of shift, scale, and distortion invariance.

• There are two key building blocks

- The convolutional layer, which consists of a number of filters
 - filters are also called kernels, feature detectors
 - each filter scans small patches in the input to detect features
- The downsampling layer, which reduces the resolution of the image for learning higher-level features.

Convolution

- Convolution in CNNs is not convolution in maths.
- Convolution in CNNs is known as cross-correlation, or sliding inner product in maths.

2D Convolution (in CNN)

- Given an N × N input, the convolution operation slides one filter through the input to extract features
 - An $F \times F$ filter is simply an $F \times F$ weight matrix.
 - We slide the filter over all $F \times F$ subarrays.
 - For each subarray, we compute the weighted sum of its elements (i.e., the dot product between the filter and the sub-array).
 - This gives us an $(N F + 1) \times (N F + 1)$ feature/activation map.

Example. 2x2 filter applied to 4x4 input

input

filter

3	9	2	4
7	7	3	1
0	3	6	9
8	1	2	0

input					outpu	ıt	
3	9 2	2	4	11111111111	45	35	17
7 1	- 7: 2	-3	1		34	35	32
0	3	6	9		16	23	32
8	1	2	0				

input				outpu	ıt	
3	9 2	2	4	 	35	17
7	7 1	-3 2	-1 ⁻¹⁻¹ -1	34	35	32
0	3	6	9	16	23	32
8	1	2	0			

input					outpu	ıt	
3	9	2 2	4 2		45		17
7	7	3 1	-1 2	anan an	34	35	32
0	3	6	9		16	23	32
8	1	2	0				

In the language of neural nets...

input

- 4x4 input matrix = outputs of 4x4 input neurons
- 3x3 output matrix = outputs of 3x3 neurons in the conv. layer
- Each output neuron is connected to 4 of the 4x4 input neurons.
- The 4 weights are shared for all the output neurons.

mpac	mput						
3	9	2	4				
7	7	3	1				
0	3	6	9				
8	1	2	0				

output

45	35	17
34	35	32
16	23	32

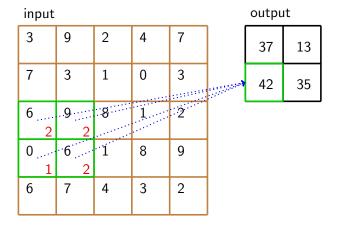
Example. 2x2 filter applied to 5x5 input with stride 2 input filter

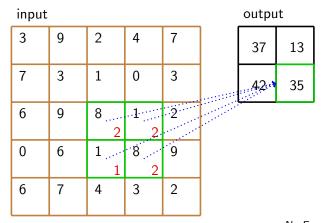
3	9	2	4	7
7	3	1	0	3
6	9	8	1	2
0	6	1	8	9
6	7	4	3	2

With stride=2, we skip 2 cells each time.

input					outpu	ıt
3 <u></u> 2	9 2	2	4	7	 37	13
7 1	.3 2	:1 ^{::::::}	0	3	42	35
6	9	8	1	2		
0	6	1	8	9		
6	7	4	3	2		

input					outpu	ıt
3	9	2 2	4	7	 	13
7	3	1 1	. 0 2	-3	 42	35
6	9	8	1	2		
0	6	1	8	9		
6	7	4	3	2		





 $N \times N$ input, $F \times F$ filter with stride S \Rightarrow output size $\lfloor \frac{N-F}{S} \rfloor + 1$

Zero-padding, dilation and bias

- We often pad each side of the input with *P* zeros (or other constants)
 - this allows the filters to scan elements near the borders
- Sometimes, in a filter with dilation D, its cells are D cells apart (D = 1 in previous examples).
- $N \times N$ input, $F \times F$ filter, pad P zeros on each side, dilation D, stride $S \Rightarrow$ output size $\lfloor \frac{N+2P-D(F-1)-1}{S} \rfloor + 1$
- In general, each filter has a bias term as well.

Convolution beyond 2D

- In general, the input is not necessarily a 2D matrix, but can be a general N-dimensional array (1D, 2D, 3D,...)
- Similarly, a filter can be a general *M*-dimensional array (you can slide it through the input array as long as $M \le N$).

Convolutional layer

- A convolutional layer often has several filters.
- Each filter produces a separate activation map.
- Filter weights are typically learned from data.

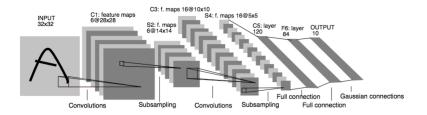
Your Turn

Which of the following statement is correct? (Multiple choice)

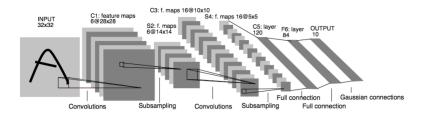
- (a) A convolutional layer is a special kind of fully connected layer.
- (b) Each neuron in a convolutional layer has to be connected to all input neurons.
- (c) Convolutional layer is designed to extract features from array data.

Sub-sampling

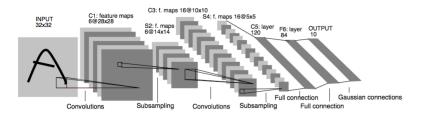
- Sub-sampling (or pooling) is very similar to convolution.
- In average pooling, when we slide the filter through the input, we simply take the average of the input elements being scanned as the output.
- In max pooling, we replace average by max.
- The default stride is equal to the filter size (i.e. we do not pool the same element twice).



- 7 layers (excluding input layer)
- Layer 1,3,5 are convolution layers (C1, C3, C5)
- Layer 2,4 are sub-sampling layers (S2, S4)
- Layer 6 is fully-connected (F6)
- Layer 7 is the output layer

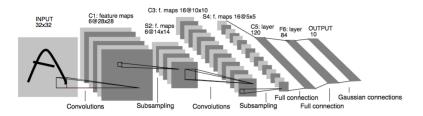


- Activation function is hyperbolic tangent up to F6.
- Output layer uses the Euclidean Radial Basis Function (RBF) units (each computes the squared distance between the input vector and the weight vector of the unit).



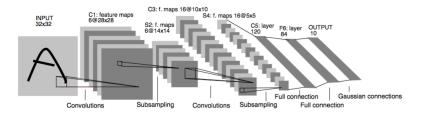
Convolutional layers

- Each convolutional layer has units organized as several 2D arrays.
- C1: 6 filters of size 5x5
- C3: 16 filters of size 5x5



Sub-sampling/pooling layers

- Each sub-sampling layer has units organized as the same number of 2D arrays as previous convolutional layer.
- Reduces each 2D array in the previous convolutional layer to a lower resolution, by taking the average of each non-overlapping 2x2 neighborhood and adding a bias to it.

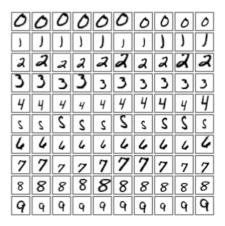


Trainable using backprop.

Performance

- MNIST dataset: 60,000 training examples, 10,000 test examples, resized to 32x32.
- 0.95% error.

Adding distorted training data helps



- Additional 540,000 distorted training examples.
- Error improved to 0.8%.

4 8 7 5 7 6 7 6 7 8 5 9 4 9-54 8-57 0-56 3-57 2-57 8-53 9-54 9->4 2->0 6->1 3->5 3->2 9->5 6->0 6->0 6->0 6->0 4 7 9 4 4 7 9 4 9 9 9 4->6 7->3 9->4 4->6 2->7 9->7 4->3 9->4 9->4 9->4 **7** 4 **8** 5 **6** 5 **8** 5 **8 9** 1->5 9->8 6->3 0->2 6->5 9->5 0->7 1->6 4->9 2->1 **2** 5 **4 7 7 1 9 1 5 5** 2->8 8->5 4->9 7->2 7->2 6->5 9->7 6->1 5->6 5->1

Errors made by LeNet5

Variants

- Max-pooling is found to work better than average-pooling.
- Overlapping pooling is sometimes used.
- Rectified linear unit (ReLU, max(0, x)) is now often used instead of sigmoid units (tanh(x) or σ(x)).

Modern CNNs

- Modern CNNs are generally much deeper and are more expressive.
- They also make use of various other ideas, such as shortcut connections, batch normalization, dropout.
- Examples: AlexNet, GoogLeNet, ResNet

More in STAT3007 Deep Learning

What You Need to Know

Convolutional neural nets

- They are special types of MLPs with sparse connections between layers.
- Three key architectural ideas: local receptive fields, weight sharing, sub-sampling.
- Two special types of layers
 - Convolutional layers
 - Sub-sampling layers