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The Journey Begins with a Cow

Guess the weight of the cow: poll
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Where Are We Heading to?

How to accurately estimate the cow weight build good ML models
∙ Making use of a crowd ⇒ Week 7 Ensemble methods

each of us is a biological prediction model trained on different datasets...

∙ Using a neural network ⇒ Week 8 and 9 Neural networks
brain-inspired models, some are good for images...

∙ Making a robust model ⇒ Week 10 Robust machine learning
malicious users, outliers,...

∙ Asking for explanations ⇒ Week 11 Interpretable machine learning
Human behavior cannot be explained for the simple reason that it makes no
sense. – Martin Rubin
...still, let’s ask the machines for explanations...

∙ Exploiting prior beliefs ⇒ Week 12 Bayesian methods
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Ensemble: A Popular Idea...

Francis Galton’s Ox (1906)
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Condorcet’s Jury Theorem (1785)
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the group as a whole knew them all (2004)
anecdote: the author guessed Penelope’s weight and was off by 46%
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Ensemble is not the panacea...
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Ensembles in Machine Learning

∙ Various methods have been proposed to build powerful ensembles
of machine learning models.

∙ These can often be used as generic methods to improve the
performance of basic machine learning models like decision trees
(DTs), SVMs.

∙ Ensemble methods have found successes in various applications.
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The Viola-Jones algorithms for face detection
(AdaBoost using one-level DTs)

Viola and Jones, Robust real-time object detection, 2001
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SVM ensemble for fraud detection

Kim et al., Constructing support vector machine ensemble, 2003
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Ensemble > Basis Functions

∙ An ensemble of basis models can often be used to represent a more
complex functional relationship than each individual model can do.

∙ This is true even the basis models are “simple” (e.g. threshold
classifiers or decision stumps).

decision stump = one-level DT
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Example. Optimal operating temperature

∙ A manager of a circuit assembly production facility noted that the
temperature affects the defect rates of the products.

∙ Two machine learning experts were hired to build models to predict
whether a temperature is suitable based on historical default rates.

∙ Both built a model under the assumption that only a threshold
need to be learned

Expert c1’s model: +1 (✓) if temperature ≥ 10, -1 (✗) otherwise.
Expert c2’s model: +1 (✓) if temperature < 20, -1 (✗) otherwise.
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∙ Consider a combined model

c(x) = sgn(0.5c1(x) + 0.5c2(x)− 0.5).

Equivalently, c = sgn(0.5c1 + 0.5c2 + 0.5c3), where c3 always predicts -1.

∙ The combined model is a “two-thresholds” model

classifier temperature

(−∞, 10) [10, 20) [20,∞)
c1 -1 +1 +1
c2 +1 +1 -1
c -1 +1 -1

∙ In general, a linear combination of threshold classifiers can be more
expressive than a threshold classifier.
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Example. 2-level decision trees in 2D
∙ Basis classifers

each classifies four quadrants in a 2D feature space into -1 or +1

c1 =
+1 −1

−1 −1
c2 =

−1 −1

−1 +1
c3 =

+1 +1

+1 +1

∙ Combined classifier

2c1 + 2c2 + c3 =
+1 −3

−3 +1

c = sgn(2c1 + 2c2 + c3) =
+1 −1

−1 +1
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Ensemble Learning

∙ Independent methods

Each model is trained independently of others.
e.g. bagging, random forest.

∙ Dependent methods

A model in the ensemble makes use of previously trained models.
e.g. AdaBoost.

∙ We will cover bagging, random forest, and AdaBoost.
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Checking Your Understanding

Which of the following statement is correct? (Multiple choice)

(a) An ensemble of models can represent functional relationships not
representable by basis models.

(b) Each model in an ensemble is constructed independently.

(c) The Viola-Jones algorithm builds an ensemble of SVMs.
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Bagging (Bootstrap Aggregating)

∙ Training
Create multiple datasets known as bootstrap samples.

▶ bootstrap sample of a dataset of size n = a sample of size n
obtained by sampling with replacement from the given dataset.

▶ for large n, each bootstrap sample looks like a random training set
drawn from the true data distribution

▶ a bootstrap sample contains roughly 0.632n different examples from
the given dataset.

Train basis models independently, one on each bootstrap sample.

∙ Testing

Classification: predict the majority of the basis models’ predictions.
Regression: predict the average of the basis models’ predictions.
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Ddata

D1 D2
. . . DB

bootstrap
samples

M1 M2
. . . MB

basis
models

M̄
combined
model

(Classifcation) M̄(x) = majority{M1(x), . . . ,MB(x)},

(Regression) M̄(x) =
1

B

B∑︁
i=1

Mi (x)
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Case Study: Two-moons

how the “entire” dataset looks like our training set
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Bagging with 2-level DTs

2-level DT bagging (B = 100)

∙ 2-level DTs creates axis-aligned decision boundaries.

∙ Bagging creates a slightly more complex decision boundary.
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Bagging with SVMs (quadratic kernel)

SVM with quadratic kernel bagging (B = 100)

∙ SVM with quadratic kernel creates a hyperbolic decision boundary.

∙ Bagging creates a slightly more complex decision boundary.
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Case Study: Digit Dataset

∙ 1797 handwritten digit images of size 8x8

available from sklearn.datasets.load_diabetes

∙ Random 75%/25% train-test split
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Bagging with DTs

∙ Bagging significantly reduces both the training and test errors as
we use more basis models.
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Model Selection for Bagging

Primer
∙ Model selection is about choosing a model of the right complexity.

Right complexity = good generalization performance.
In other words, we want a model that does not underfit or overfit.

∙ It can be about choosing between different classes of models, or
choosing suitable values for hyperparameters controlling the
complexity of a model.

∙ Standard techniques: validation/development set, cross-validation.

24 / 53



Effect of number of models for bagging

∙ For bagging, the number of models used is a key complexity
measure.

∙ In theory, the larger the number models, the better the ensemble is.

∙ In practice, there is a diminishing return to add additional models
to a large ensemble.

∙ ⇒ Stop adding more models when doing so leads to little
improvement in generalization performance.
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Out-of-bag (OOB) error

∙ Validation set method requires additional data, and cross-validation
is computationally expensive.

∙ OOB error provides an estimate of the generalization performance
of bagging that

does not require additional data, and
is efficiently computable.

∙ Calculation of the OOB error

For each training example, find all basis models trained without it,
and compute a prediction (OOB prediction) on it using these
models.
OOB error = the error for all OOB predictions.

∙ Example: suppose we have 100 basis models. If a training example
(xi , yi ) is not used for training 81 of them, and 61 of them predict
+1 on xi and 20 predicts -1 on xi , then the OOB prediction on xi
is +1.
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Revisiting bagging with DTs on digit dataset

∙ The test error has not stabilised yet when training error stabilises.

∙ The test error has stabilised when the OOB error stabilises.

∙ Overall, OOB error is a better estimator for test performance.
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Why Bagging Works

Measuring an algorithm’s performance

∙ In practice, we usually work with a single training and test set
randomly sampled from the data distribution.

∙ However, what we are interested in is whether an algorithm works
in general, that is, whether it works well on different randomly
sampled training and test sets.

∙ In theory, we measure the average performance using the expected
prediction error.
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Expected prediction error (EPE)

∙ The EPE of a regression algorithm on a fixed example x is

E((Ỹ − Y )2), where

Y is the output on x with distribution P(Y | x),
Ỹ is the predicted value on x for a model trained on a random
training set (typically, of a fixed size).

∙ If we have N independently sampled outputs y (1), . . . , y (N) for x ,
and N predicted values ỹ (1), . . . , ỹ (N) given respectively by models
trained on N random training sets, then for large N,

EPE ≈ 1

N

N∑︁
i=1

(y (i) − ỹ (i))2

.
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Bias-variance decomposition
∙ EPE can be decomposed as

expected prediction error⏞  ⏟  
E
(︀
(Ỹ − Y )2

)︀
=

variance⏞  ⏟  
E
(︀
(Ỹ − E(Ỹ ))2

)︀
+

bias (squared)⏞  ⏟  (︀
E(Ỹ )− E(Y )

)︀2
+

irreducible noise⏞  ⏟  
E
(︀
(Y − E(Y ))2

)︀
,

where expectation is wrt the random training set and Y .

Variance: characterizes how different the prediction on x will be if
we get a different random training set.
Bias: characterizes whether the model is able to capture the
input-output relationship on average.
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Bias-variance tradeoff
∙ In general, we can’t minimize bias and variance at the same time

A less complex model has higher bias and lower variance.
A more complex model has lower bias and higher variance.
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Finally, why bagging works...

∙ When using B basis models, bagging produces B identically
distributed but correlated predictions Ỹ (1), . . . , Ỹ (B), and predicts

Ȳ =
1

B

B∑︁
i=1

Ỹ (i)

∙ Identically distributed ⇒ averaging doesn’t change bias, because

E(Ȳ ) = E(Ỹ (i))

for all i .

N.B. The bias of a model trained on a bootstrap sample can be
different from the bias of a model trained on the original sample,
but we assume that they are the same here.
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∙ Correlation ⇒ variance reduction, because

Var(Ȳ ) = 𝜌𝜎2 +
1− 𝜌

B
𝜎2 < 𝜎2 = Var(Ỹ (i))

Assumptions: pairwise correlation corr(Ỹ (i), Ỹ (j)) is a constant
𝜌 < 1 for i ̸= j , and Var(Ỹ (i)) equals 𝜎2 for any i .

∙ In short, bagging is better than a single model because it keeps the
bias the same, while reducing the variance.
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Checking Your Understanding

Which of the following statement is correct? (Multiple choice)

(a) Computing the OOB error for bagging is more expensive than
computing the cross-validation error.

(b) Bagging is only used to construct SVM ensembles.

(c) Bagging reduces bias while keeping variance the same.

(d) In general, a more complex model has lower bias but larger
variance.
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Random Forests (RFs)

∙ Random forest is

a modified bagging method for DTs,
designed to further reduce variance by building a collection of
decorrelated trees.

∙ RF and bagging with DTs differs only in how a decision is trained
on a bootstrap sample

Bagging: for each node, choose the splitting variable from all d
features.
RF: for each node, first randomly sample m < d features, then
choose the splitting variable among them.

∙ That’s the only difference, but this subtle difference is important.
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Why RF is an improvement of bagging

∙ Recall that for bagging

Var(Ȳ ) = 𝜌𝜎2 +
1− 𝜌

B
𝜎2 < 𝜎2 = Var(Ỹ (i))

∙ Choosing the splitting variable from a random subset helps to
decorrelate the trees, that is, 𝜌 is reduced.

∙ With a suitable value of m < d , the bias of each individual model
remains roughly the same.

∙ Overall, EPE can be smaller (with suitable choice of
hyper-parameters).
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Choices of m and minimum node size

∙ Larger m: larger variance, smaller bias.
∙ Larger minimum node size: larger bias, smaller variance.

node size: number of training examples falling into a node

∙ Recommended heuristics

Regression: m = ⌊d/3⌋, minimum node size = 5.
Classification: m = ⌊

√
d⌋, minimum node size = 1.
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RFs for two moons

2-level decision tree random forest (2-level DT, B = 100)
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decision tree random forest

∙ A single decision tree’s decision boundary is overfitting, while an
RF produces a pretty good decision boundary.
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RF for digit recognition

∙ RF performs better than bagging.

40 / 53



Boosting

Weak learner and strong learner

∙ Weak learner: a learning algorithm that produces a model slightly
better than random guessing.

∙ Strong learner: a learning algorithm that can produce arbitrary
good model.
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Boosting

∙ Problem: if we have a weak learner, can we use it to build a strong
learner?

∙ Surprisingly, the answer is yes, and an algorithm for converting a
weak learner to a strong learner is called a boosting algorithm.

∙ Many boosting algorithms have been developed.
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How boosting algorithms work

∙ While bagging and RF are independent ensemble learning methods,
boosting is a dependent method (i.e. a basis model is built based
on previous models).

∙ Boosting learns a combination of basis models, by sequentially
adding one model at a time, with each new model learned on a
training set re-weighted based on previous models.

∙ We focus on the classical AdaBoost algorithm.
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AdaBoost (Adaptive Boosting)

Problem

∙ Given: a training set {(x1, y1), . . . , (xn, yn)} ∈ 𝒳 × {−1,+1}, and
a set G ⊆ {−1,+1}𝒳 of simple/weak/basis classifiers.

∙ AdaBoost produces a score model

F (x) =
T∑︁
t=1

𝛼t ft(x),

where each 𝛼t is non-negative and each ft ∈ G .

∙ F classifies an instance x to the class sgn(F (x)).
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AdaBoost

1: F0(x) = 0.
2: Set w1(i) =

1
n
for each i ∈ [n].

3: for t = 1 to T do
4: Train a classifier ft ∈ G on the weighted dataset {(wi , xi , yi )}.
5: 𝜖t ←

∑︀n
i=1 wt(i)I (ft(xi ) ̸= yi ).

6: 𝛼t ← 1
2
ln 1−𝜖t

𝜖t
.

7: Ft ← Ft−1 + 𝛼t ft .
8: Set wt+1(i) ∝ exp(−yiFt(xi )) for each i ∈ [n].

9: F ← FT/
∑︀T

t=1 𝛼t .

∙ Turning a weak learner into a strong one in 9 lines.
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AdaBoost

1: F0(x) = 0.
2: Set w1(i) =

1
n
for each i ∈ [n].

3: for t = 1 to T do
4: Train a classifier ft ∈ G on the weighted dataset {(wi , xi , yi )}.
5: 𝜖t ←

∑︀n
i=1 wt(i)I (ft(xi ) ̸= yi ).

6: 𝛼t ← 1
2
ln 1−𝜖t

𝜖t
.

7: Ft ← Ft−1 + 𝛼t ft .
8: Set wt+1(i) ∝ exp(−yiFt(xi )) for each i ∈ [n].

9: F ← FT/
∑︀T

t=1 𝛼t .

∙ We start with a null classifier and an equally weighted dataset.
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AdaBoost

1: F0(x) = 0.
2: Set w1(i) =

1
n
for each i ∈ [n].

3: for t = 1 to T do
4: Train a classifier ft ∈ G on the weighted dataset {(wi , xi , yi )}.
5: 𝜖t ←

∑︀n
i=1 wt(i)I (ft(xi ) ̸= yi ).

6: 𝛼t ← 1
2
ln 1−𝜖t

𝜖t
.

7: Ft ← Ft−1 + 𝛼t ft .
8: Set wt+1(i) ∝ exp(−yiFt(xi )) for each i ∈ [n].

9: F ← FT/
∑︀T

t=1 𝛼t .

∙ The weak learner is used to obtain a weak classifier ft .

∙ ft doesn’t need to minimize its error rate on the weighted training set.

∙ ft just need to be slightly better than random guessing.
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AdaBoost

1: F0(x) = 0.
2: Set w1(i) =

1
n
for each i ∈ [n].

3: for t = 1 to T do
4: Train a classifier ft ∈ G on the weighted dataset {(wi , xi , yi )}.
5: 𝜖t ←

∑︀n
i=1 wt(i)I (ft(xi ) ̸= yi ).

6: 𝛼t ← 1
2
ln 1−𝜖t

𝜖t
.

7: Ft ← Ft−1 + 𝛼t ft .
8: Set wt+1(i) ∝ exp(−yiFt(xi )) for each i ∈ [n].

9: F ← FT/
∑︀T

t=1 𝛼t .

∙ Compute the error rate 𝜖t of the weak classifier ft .

∙ A weak learning algorithm ensures that 𝜖t < 1/2.

44 / 53



AdaBoost

1: F0(x) = 0.
2: Set w1(i) =

1
n
for each i ∈ [n].

3: for t = 1 to T do
4: Train a classifier ft ∈ G on the weighted dataset {(wi , xi , yi )}.
5: 𝜖t ←

∑︀n
i=1 wt(i)I (ft(xi ) ̸= yi ).

6: 𝛼t ← 1
2
ln 1−𝜖t

𝜖t
.

7: Ft ← Ft−1 + 𝛼t ft .
8: Set wt+1(i) ∝ exp(−yiFt(xi )) for each i ∈ [n].

9: F ← FT/
∑︀T

t=1 𝛼t .

∙ Compute the weight 𝛼t of the weak classifier based on its error rate 𝜖t .

∙ As 𝜖t → 1/2, 𝛼t → 0; as 𝜖t → 1, 𝛼t →∞.
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AdaBoost

1: F0(x) = 0.
2: Set w1(i) =

1
n
for each i ∈ [n].

3: for t = 1 to T do
4: Train a classifier ft ∈ G on the weighted dataset {(wi , xi , yi )}.
5: 𝜖t ←

∑︀n
i=1 wt(i)I (ft(xi ) ̸= yi ).

6: 𝛼t ← 1
2
ln 1−𝜖t

𝜖t
.

7: Ft ← Ft−1 + 𝛼t ft .
8: Set wt+1(i) ∝ exp(−yiFt(xi )) for each i ∈ [n].

9: F ← FT/
∑︀T

t=1 𝛼t .

∙ Add ft to the ensemble.

44 / 53



AdaBoost

1: F0(x) = 0.
2: Set w1(i) =

1
n
for each i ∈ [n].

3: for t = 1 to T do
4: Train a classifier ft ∈ G on the weighted dataset {(wi , xi , yi )}.
5: 𝜖t ←

∑︀n
i=1 wt(i)I (ft(xi ) ̸= yi ).

6: 𝛼t ← 1
2
ln 1−𝜖t

𝜖t
.

7: Ft ← Ft−1 + 𝛼t ft .
8: Set wt+1(i) ∝ exp(−yiFt(xi )) for each i ∈ [n].

9: F ← FT/
∑︀T

t=1 𝛼t .

∙ (x , y) is correctly classified by Ft if yFt(x) > 0.

large positive yFt(x) means (x , y) is easy for Ft

large negative yFt(x) means (x , y) is hard for Ft

∙ Essentially, the weight update assigns hard examples larger weights.

∙ The weight can be recursively updated as wt+1(i) ∝ wt(i) exp(−yi ft(xi )), and
they are often normalized to sum to 1.
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AdaBoost

1: F0(x) = 0.
2: Set w1(i) =

1
n
for each i ∈ [n].

3: for t = 1 to T do
4: Train a classifier ft ∈ G on the weighted dataset {(wi , xi , yi )}.
5: 𝜖t ←

∑︀n
i=1 wt(i)I (ft(xi ) ̸= yi ).

6: 𝛼t ← 1
2
ln 1−𝜖t

𝜖t
.

7: Ft ← Ft−1 + 𝛼t ft .
8: Set wt+1(i) ∝ exp(−yiFt(xi )) for each i ∈ [n].

9: F ← FT/
∑︀T

t=1 𝛼t .

∙ In the final score function F , the weights of the weak classifiers are normalized
to sum to 1.
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Bound on training error

The error rate of FT is upper bounded as follows

1

n

n∑︁
i=1

I (sgn(FT (xi )) ̸= yi ) ≤
T∏︁
t=1

√︁
1− 4𝛾2t ,

where 𝛾t =
1
2 − 𝜖t (how much ft is better than random guessing).
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AdaBoost with 2-level DTs

RF AdaBoost

∙ Both RF and AdaBoost use 2-level DTs as basis models.

∙ AdaBoost finds a much better decision boundary than RF in this
case.
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AdaBoost with SVMs with quadratic kernels

bagging AdaBoost

∙ Bagging’s decision boundary is roughly hyperbolic.

∙ AdaBoost’s decision boundary is also roughly hyperbolic, and has a
different orientation.
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Comparing AdaBoost, bagging and RF on the digit dataset

∙ DTs are used as the basis models.

∙ Both RF and bagging are much better than AdaBoost.
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Not the end of story yet...

∙ AdaBoost has zero training error with just one model!

∙ AdaBoost has overfitted.
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Fixing AdaBoost’s performance

∙ If we use 5-level DTs, AdaBoost has a similar test set performance
as RF.

∙ AdaBoost is more prone to overfitting if the basis model is too rich.
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Beyond Binary Classification

∙ Boosting algorithms have been designed to handle problems other
than binary classification

Multi-class classification
Regression

∙ sklearn and XGBoost contains well-documented implementations of
boosting algorithms.
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Checking Your Understanding

Which of the following statement is correct? (Multiple choice)

(a) AdaBoost is an independent method for ensemble learning.

(b) Random forest is an improved bagging algorithm.

(c) Random forest constructs decorrelated trees.
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What You Need to Know

∙ Ensembles can be much more expressive than basis models.

∙ Two approaches: independent methods, dependent methods

∙ Bagging: algorithm, model selection, why it works

∙ Random forest: algorithm, why it works, hyperparameters

∙ Boosting: weak learning and strong learning, AdaBoost

∙ Tuning ensemble methods: class of basis models, size of ensemble

53 / 53


	Random Forests
	Boosting

