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Where Are We Heading to?

How to build good ML models
® Making use of a crowd = Week 7 Ensemble methods

each of us is a biological prediction model trained on different datasets...

® Using a neural network = Week 8 and 9 Neural networks

brain-inspired models, some are good for images...

Making a robust model = Week 10 Robust machine learning

malicious users, outliers, ...

Asking for explanations = Week 11 Interpretable machine learning

...let’s ask the machines for explanations...

Exploiting prior beliefs = Week 12 Bayesian methods
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Interpretability

Everybody has his own interpretation of a machinelearning-algerithm painting he sees...

Francis Bacon
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What is an interpretation?

® An interpretation connects the abstract/unfamiliar to the
obvious/familiar.

® Not new in this course.

abstract obvious

interprete

® Many other ways of interpreting machine learning algorithms have
been created — we are good at coming up with interpretations.

® |Interpretations help come up with explanations for the predictions.
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Interpretation = Misinterpretation?

® Each interpretation often tells us part of the truth, and we may
need to use several methods to form a more complete picture.

® An algorithm designed to generate helpful interpretations may
produce misinterpretations — understanding how it works helps us
to avoid misinterpreting its output.
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Interpretable Machine Learning

We want to find intuitive descriptions for

m the functional relationship represented by a model
m each component of a model

m effect of each input variable
|

Intuitive: visualizations, numerical summary, simple rules, ...

Interpretations sometimes help explaining why a model makes a
prediction.

We discuss some interpretation methods and how they can be
applied in this lecture.

6/31



Approaches

® Various approaches have been taken to make machine learning
models interpretable, and they can be categorized in various ways.
® Built-in vs post hoc

m Built-in: models are designed to be interpretable (e.g. linear
regression)

m Post hoc: models are analyzed for interpretability (e.g. permutation
importance)

® White-box vs black-box

m White-box: everything about the model is needed (e.g. linear
regression model weights)

m Black-box: only partial information about the model is needed (e.g.
permutation importance)
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® Model specific vs model agnostic
m Model-specific: designed for specific models only (e.g. linear
regression model weights)
m Model-agnostic: designed for generic learning approaches (e.g.
permutation importance)
® We will cover some basic methods
m Interpretable models: linear regression, logistic regression, decision
trees
m Surrogate model method
m Variable importance: Gini importance, permutation importance
m Low dimensional approximation
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Interpretable Models

¢ More flexible/complex models often have better performance, but

typically harder to interpret
flexibility

P

N
interpretability

® For a long time, interpretable models like linear models are strongly
preferred.
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Interpreting Linear Models

® We have seen a number of linear models in this course
m Linear regression, logistic regression, SVM with linear kernels

® Linear models are simple and their parameters often have easily
interpretable meanings
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Linear regression

¢ A linear regression model f,(x) has the form

d
fw(x) = wy + Z wiX;,
i=1

where w = (wo, wy, ..., wy), and x = (x1,...,X4)-
® |nterpretation of the parameters

m bias wy: output when all features are 0
m weight w;: change in the output when x; increases by one unit
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Boston house prices again: predict median house price in a using

13 features
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per capita crime rate by town

proportion of residential land zoned for lots over 25,000 sq.ft.
proportion of non-retail business acres per town

Charles River dummy variable (= 1 if tract bounds river; O otherwise)
nitric oxides concentration (parts per 10 million)

average number of rooms per dwelling

proportion of owner-occupied units built prior to 1940

weighted distances to five Boston employment centres

index of accessibility to radial highways

full-value property-tax rate per $10,000

pupil-teacher ratio by town

1000(Bk - 0.63)"2 where Bk is the proportion of blacks by town
% lower status of the population

Median value of owner-occupied homes in $1000's

Which features are important to you?
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Generally, weights = importance
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® Weights of normalized features are much better indicators of
feature importances
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m Normalization: scale each feature so that it has unit variance, then
train a linear regression model

m Magnitude measures importance

m Sign reflects whether it has a positive or negative effect
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® Weight of normalized feature = weight of unnormalized feature x
feature standard deviation

® Thus weight of normalized feature is a kind of normalized weight
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(Binary) Logistic regression

® A binary logistic regression model defines a conditional class
distribution

1
1+ e Yo+l wix)’

p(y | wi) =

where w = (wo, wy, ..., wy), x = (x1,...,Xq), and y € {0,1}.
® Equivalently, the log-odds is linear

ply =1]x,w) ¢
In=r—— 20— g+ W;X;.
ply =0]x,w) ; o

® |nterpretation of the parameters

m bias wy: log-odds when all features are 0
m weight w;: change in the log-odds when x; increases by one unit
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® As in linear regression, the weights generally do not measure the
importance of the features.

® However, the weights of the normalized features are much better
indicators of feature importances.

17 /31



Interpreting Decision Trees

e Decision trees can be converted into a set of rules
m Each rule correspond to each path from the root to a leaf

® The rules can often be simplified (e.g. test conditions on the same
feature can often be combined).

18 / 31



® A decision tree for iris data

petal width (cm) <= 0.6
samples = 150
walue = [50, 50, 50]
«class = setosa

petal width [em) <= 175
samples = 100

value = [0, 50,
class = versicalor

B E.g.: petal width < 0.8 cm = setosa (in fact, we can replace = by iff)
B E.g.: petal width € (0.8 cm, 1.65 cm) and petal length < 4.95 cm = versicolor
(simplified from the path from root to the left-most green leaf)
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Interpreting Complex Models

® For complex models, it is often hard (if not impossible) to interpret
what they are doing by examining their internals.

® We can interpret them by querying their input-output relationships
to find

m surrogate interpretable models
m variable importance scores
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Surrogate Model Method

A surrogate model M’ for a given model M is one trained to fit the
predictions of M on a dataset.

The dataset is chosen depending on what you consider interesting

m training set, test set, or a subset of them
m a grid of points

The surrogate model is chosen to be an interpretable model

An interpretable model is simpler, and thus such a surrogate model
inevitably oversimplies the original model.
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Variable Importance

® We often have various ways to measure how much importance a
model assigns to a variable

m each metric only looks at a specific aspect of the model
m sometimes the metrics may present conflicting pictures

® Many variable importance scores are model-specific (e.g. the
normalized weights for a linear regression model).

® The permutation importance is a model-agnostic importance score.
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Permutation importance

® Given: a dataset D, a model M, a performance score

e Computing the permutation importance of a variable in M
m calculate the score s of M on D
m create multiple permuted datasets Dy, ..., Dy

» each is the same as D except that the values of the variable for all

the instances are permuted

calculate the score s; of M on D; for each i

calculate the mean 5 and standard deviation o of si,...,s,.

permutation importance: mean = s — 5, std = 0.

® The permutation importance is a random number.
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Variable Importance for Linear
Regression

e Comparison of two variable importance scores on the Boston house
price dataset

10 method
= absolute normalized weight
mmm permutation importance

importance

RN TN
) features
m To make the two importance scores comparable, the scores are
scaled such that the maximum is 1.
m While the two scores are generally different, they rank the features
similarly.
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Variable Importance for Random
Forest

Gini importance
® Random forest has a model-specific variable importance score
known as the Gini importance.
® The Gini importance of a variable is the total weighted decrease in
node impurities from splitting on the variable, averaged over all
trees.
m The weight is the number of examples involved in impurity decrease.
m For classification, node impurity is the Gini index.
m For regression, node impurity is the residual sum of squares.
® |n an implementation, Gini importances may be normalized so that
the sum of the importances of all variables sum to 1.
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Comparison of two variable importance scores on the Boston house
price dataset
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= permutation importance
- Gini

importance
o o
& &

=
=

=
a

=
=Y

IS o x 3 w o
55§§geyn§ﬂ

features

m To make the two importance scores comparable, the scores are
scaled such that the maximum is 1.

m The two scores are somewhat similar, but they differ significant for
the top 2 features.
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® Random forest and linear regression assign very different
importance scores to the features.

® The importance scores are not the intrinsic importance scores of
the features, but measures how important the models consider the
features to be.
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Low-dimensional Approximation

® For low dimensional data, we can directly visualize the functional
relationship represented by a model

abstract obvious

interprete

® For high dimensional data, we can approximately visualize the
funtional relationship by performing dimension reduction first.

m PCA is one way to do dimension reduction, but there are other
ways, such as t-SNE, autoencoders (not covered in this course)
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PCA and autoencoder codes for MNIST

Hinton and Salakhutdinov, Reducing the dimensionality of data with neural networks, 2006
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Checking Your Understanding

Which of the following statement is correct? (Multiple choice)
(a) A more flexible model is generally easier to interpret.

(b) If two features are identical, then they always get the same
importance scores.

(c) A post hoc interpretation method can only be applied to a
black-box model.
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What You Need to Know

® An interpretation

m connects the abstract/unfamiliar to the obvious/familiar.
m often tells part of the truth

® Approaches to make machine learning models interpretable

m Built-in vs post hoc, white-box vs black-box, model-specific vs
model-agnostic

® Some basic methods

m interpretable models, surrogate method, variable importance, low
dimensional approximation
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