
Multilayer Perceptrons

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 75

The Journey Begins with a Cow

Guess the weight of the cow: poll

2 / 75

Where Are We Heading to?

How to accurately estimate the cow weight build good ML models
∙ Making use of a crowd ⇒ Week 7 Ensemble methods

each of us is a biological prediction model trained on different datasets...

∙ Using a neural network ⇒ Week 8 and 9 Neural networks
brain-inspired models, some are good for images...

∙ Making a robust model ⇒ Week 10 Robust machine learning
malicious users, outliers,...

∙ Asking for explanations ⇒ Week 11 Interpretable machine learning
Human behavior cannot be explained for the simple reason that it makes no
sense. – Martin Rubin
...still, let’s ask the machines for explanations...

∙ Exploiting prior beliefs ⇒ Week 12 Bayesian methods

3 / 75

Brain-inspired Machine Learning

von Neumann compuer
✓ numerical problems
✓ symbolic problems
✗ perceptual problems
✗ high energy
✗ stored programs
✗ not robust

human brain
✗ numerical problems
✗ symbolic problems
✓ perceptual problems
✓ low energy
✓ self-learning
✓ robust

input
layer

hidden
layer

hidden
layer

output
layer

artificial neural net
automatic speech recognition
game AI
face recognition
medical image analysis
document classification
...

Artificial neural nets (ANNs) draw inspiration from how human brain works and
have found many successful applications in recent years

4 / 75

History of ANNs

Research on artificial neural networks have gone through several
ups and downs since its inception (figure is approximate).

5 / 75

(A Few) Pioneers

Mark I Perceptron architecture Rosenblatt and Mark I Perceptron

6 / 75

The Adaline is a lunch box sized machine

7 / 75

ALVINN Driving at 70 MPH (1993)

numerous other pioneering works...
(beyond this course)

Pomerleau, Knowledge-based training of artificial neural networks for autonomous robot driving, 1993

8 / 75

What are ANNs?

∙ An ANN is a network of basic computational units called (artificial) neurons

∙ The connection between two neurons may allow information to be sent in one
direction or in both directions.

∙ Each neuron receives inputs along the incoming connections, and performs

computes an output using simple transformations.

Typically, output is a simple transformation of a linear function of the inputs.

∙ We cover basic ANNs in this course.

More about ANNs: STAT3007 Deep Learning

9 / 75

Simplest Neural Networks

Linear regression

∙ A linear regression model computes the function

f (x) = w⊤x,

where the input x = (1, x1, . . . , xd), with xi ’s being the features.

The dummy feature 1 means a bias term is included.

∙ This can be represented by the neural network below
x0 = 1

x1

x2

...

xd

Σ

w1

w2

wd

w0

x⊤w

10 / 75

Perceptron

∙ The perceptron computes the function

f (x) =

{︃
+1, w⊤x > 0,

−1, otherwise.
.

∙ This can be represented by the neural network below
x0 = 1

x1

x2

...

xd

Σ

w1

w2

wd

w0

x⊤w y = sgn(x⊤w)

∙ While summation (computing x⊤w) and thresholding (of x⊤w) are
shown separately in the above diagram, they are operations within
a single neuron.

11 / 75

Logistic regression

∙ The (binary) logistic regression model computes

f (x) = p(y = 1 | x) = 𝜎(w⊤x) =
1

1 + e−w⊤x
,

that is, the probability that x is positive.

𝜎(u) = 1
1+e−u is the logistic function.

∙ This can be represented by the neural network below
x0 = 1

x1

x2

...

xd

Σ

w1

w2

wd

w0

x⊤w 𝜎(x⊤w)

∙ Again, summation and the sigmoid transformation (of x⊤w) are
operations within a single neuron.

12 / 75

∙ The above examples are the simplest neural networks, and the
simplest multilayer perceptrons.

∙ They only perform one-level of computation with the raw inputs,
and are very limited in their ability to express complex functional
relationships.

∙ Multilayer perceptrons allow multi-level transformations of the
inputs and can represent very complex functional relationships.

13 / 75

Multilayer Perceptron (MLP)

input
layer

hidden
layer

hidden
layer

output
layer

14 / 75

Structure of an MLP
∙ An MLP is also known as a multilayer feedforward neural network

in a feedforward neural network, the connections do not form cycles
(note that each connection points from the input neuron to the
output neuron).
in a multilayer network, the neurons are grouped into different layers
the dummy neuron for the bias term is often omitted

∙ The depth or the number of layers is the number of all layers with
tunable parameters (i.e. all layers except the input layer).

∙ An MLP can be seen as a series of complex transformations.

15 / 75

Naming the layers and neurons

∙ The input layer is also called the first/bottom layer, and neurons in
it are called input neurons/units.

∙ The output layer is also called the last/top layer, and neurons in it
are called output neurons/units.

∙ Layers between the input and the output layers are called hidden
layers, and neurons in them are called hidden neurons/units.

∙ A neural with more than one hidden layer is called a deep neural
network.

16 / 75

input
layer

hidden
layer

hidden
layer

output
layer

∙ This is a 3 layer MLP, or a 2 hidden layer MLP.

∙ There are 5 input units, 7 hidden units for each of the two hidden
layers, and 3 output units.

17 / 75

Computation in neural nets

∙ Each neuron first computes the weighted input sum (including the
bias term), then applies an activation/transfer function to
transform the weighted input sum to an output.
∙ Some activation functions

Threshold activation I (u) =

{︃
1, u > 0,

−1, otherwise.
.

Sigmoid activation 𝜎(u) = 1
1+e−u .

The rectifier (u)+ = max(0, u). A linear unit using the rectifier
activation is called a ReLU (rectified linear unit).

18 / 75

∙ For a vector u = (u1, . . . , ud), and an activation function a, we
shall use a(u) to denote (a(u1), . . . , a(ud)), that is, we apply the
activation function to each component of u.

19 / 75

Example

∙ Consider the following MLP, with sigmoid hidden units and identity
output activation, and weights shown on the edges.

x1

x2

h1

h2

o

1

2

1

1

1

1

∙ Then the output o is obtained using the following computation(︂
h1
h2

)︂
= 𝜎

(︂
W1

(︂
x1
x2

)︂)︂
, o = W2

(︂
h1
h2

)︂
,

where W1 =

(︂
w1,11 w1,12

w1,21 w1,22

)︂
=

(︂
1 2
1 1

)︂
, and

W2 =
(︀
w2,1 w2,2

)︀
=

(︀
1 1

)︀
.

20 / 75

∙ The function computed by the network can be written as

o = W2𝜎

(︂
W1

(︂
x1
x2

)︂)︂
=

1

1 + e−x1−2x2
+

1

1 + e−x1−x2
.

∙ When x1 = 1, x2 = 1, we have(︂
h1
h2

)︂
=

(︂
𝜎(3)
𝜎(2)

)︂
, o = h1 + h2 = 𝜎(3) + 𝜎(2) ≈ 1.83

21 / 75

Regression Networks

∙ Consider a regression problem of predicting the value of an input
x ∈ Rd .

∙ We usually design a neural net with a single output o = fw(x),
where w consists of all the network parameters.

∙ Given a training set (x1, y1), . . . , (xn, yn) ∈ Rd × R,
training/learning the neural net often amounts to minimizing the
quadratic loss, or mean squared error (MSE)

min
w

L(w)
def
=

1

n

n∑︁
i=1

(fw(xi)− yi)
2.

22 / 75

Classification Networks

∙ Consider a classification problem of classifying an input x ∈ Rd to
one of C classes.

∙ We usually design a neural net fw : Rd → RC , with each output
being the score for a class.

∙ The class with the largest score is the predicted class.

∙ Given a training set (x1, y1), . . . , (xn, yn) ∈ Rd × [C], learning the
neural net often amounts to minimizing the log-loss

min
w

L(w)
def
=

1

n

n∑︁
i=1

− ln p(yi | xi ,w),

where p(yi | xi ,w) = eoi,yi /
∑︀C

c=1 e
oic , with (oi1, . . . , oiC) being the

network’s output vector for xi .

23 / 75

Revisiting Two Moons

∙ Decision boundary for a single hidden layer MLP with 10 hidden
units and 2 linear output units

ReLU hidden units tanh hidden units
∙ When using ReLU hidden units, the decision boundary is piecewise
linear and have sharp corners.

∙ When using tanh hidden units, the decision boundary is much
smoother.

24 / 75

Checking Your Understanding

Which of the following statement is correct? (Multiple choice)

(a) In a multilayer perceptron, neurons are organized into several layers
with connections between adjacent layers only.

(b) A classification network usually has only one output neuron.

(c) A neuron in a neural network always outputs the weighted input
sum.

(d) The linear regression model can be viewed as a neural net.

25 / 75

Neural Network Learning

∙ To solve the optimization problem of minimizing the loss L(w) for
learning the neural net, we typically use numerical methods.

∙ In particular, we often use gradient-based methods to minimize the
loss function.

26 / 75

The Hill Climber Analogy

∙ You want to get down a hill, but you have very limited visibility
due to a heavy fog.

∙ You have a tool that allows you to measure the steepness of the
hill at your location along any direction.

∙ Using the tool takes a lot of time, and you do not want to use it
too frequently.

27 / 75

∙ We can choose to move down along the steepest downhill direction.

∙ However, we need to determine how much we get down along that
direction each time after we measure steepness so that we do not
go off the track and then possibly go downhill instead.

28 / 75

Gradient Descent

∙ Gradient descent is the most basic gradient-based method for
minimizing a function L(w).

∙ Assume that we start from some w0, then at iteration t ≥ 0, we
compute the next iterate wt+1 using

wt+1 = wt − 𝜂t ∇ L(wt),

where 𝜂t ≥ 0 is a step size to be chosen.

∙ The step size is often called the learning rate when L(w) is an
objective function in machine learning.

29 / 75

Why does gradient descent work

∙ Using the first order Taylor series expansion, for any small vector d ,

L(w + d) ≈ L(w) + d⊤∇ L(w).

∙ Hence for small 𝜂, we have

L(wt+1) = L(wt − 𝜂t ∇ L(wt))

≈ L(wt) + (−𝜂t ∇ L(wt))
⊤∇ L(wt)

= L(wt)− 𝜂t‖∇ L(wt)‖22
< L(wt),

if ∇ L(w) ̸= 0. That is, the function value decreases if we move
along the negative gradient direction by a small step.

30 / 75

Step size matters!

∙ Consider the following minimization problem

min
x∈R

f (x , y) = x2 + y2

∙ Clearly, the minimizer is (0, 0).

∙ We consider how gradient descent works starting from (2, 3) using
different step sizes.

31 / 75

∙ Constant step size 𝜂s = 0.25 for all s.

(x1, y1) = (2, 3).
(x2, y2) = (x1, y1)− 0.25 · 2(x1, y1) = 0.5(x1, y1).
(x3, y3) = (x2, y2)− 0.25 · 2(x2, y2) = 0.5(x2, y2) = 0.52(x1, y1).
. . .
(xs , ys) = 0.5s−1(x1, y1)→ (0, 0) as s →∞.

∙ In this case, we never find the minimizer in finitely many iterations,
but we can find a solution that is arbitrarily close to the minimizer
after sufficiently many iterations.

32 / 75

∙ Constant step size 𝜂s = 1 for all s.

(x1, y1) = (2, 3).
(x2, y2) = (x1, y1)− 1 · 2(x1, y1) = −(x1, y1).
(x3, y3) = (x2, y2)− 1 · 2(x2, y2) = −(x2, y2) = (x1, y1).
. . .
(xs , ys) = (−1)s−1(x1, y1) does not converge to the minimizer.

∙ We never encounter a solution that is close to the minimizer in this
case!

33 / 75

∙ Step size or learning rate determines whether gradient descent
converges or not, and how fast it converges. To make gradient
descent converge fast,

The step size need to be small enough to guarantee function value is
decreasing.
The step size need to be large enough so that there is a sufficient
decrease.

It is often not easy to choose a good step size.

∙ A simple guideline: try numbers like 1, 0.1, 0.01,..., ignore those
leading to divergence, and choose the one with best generalization
performance among the remaining ones.

34 / 75

Stochastic Gradient Descent (SGD)

∙ In machine learning, the loss L(w) often has the form

L(w) =
1

n

∑︁
i

Li (w),

where Li (w) measures how the model w fits example i .

e.g., in regression , Li (w) = (fw(xi)− yi)
2.

∙ In SGD, instead of using full gradients computed on the whole
dataset, we use stochastic gradients computed on random selected
examples.

35 / 75

∙ That is, we update wt to

wt+1 = wt − 𝜂t g̃t ,

where g̃t = ∇ Li (w) with i randomly sampled from 1, . . . , n.

∙ We often use the mini-batch version of SGD, in which we set

g̃t =
1

|S |
∑︁
i∈S
∇ Li (w),

where S is a random subset of 1, . . . , n.

∙ While SGD can jump around in the solution space, the mini-batch
version is much more stable.

36 / 75

∙ Gradient descent has a smooth trajectory, while SGD has a
zigzagging trajectory.

37 / 75

∙ SGD is often computationally attractive when the dataset is very
large.

∙ In practice, if the dataset has a lot of redundancy, SGD is able to
find a good solution quickly even though it uses only a subset of
the examples (typically the case for large datasets).

38 / 75

More on Gradient-based Learning

∙ Gradient descent is the simplest algorithm to use gradients for
optimization.
∙ There are many more sophisticated algorithms

momentum, AdaDelta, Adam... (beyond this course)

39 / 75

Checking Your Understanding

Which of the following statement is correct? (Multiple choice)

(a) Neural network learning is often formulated as an optimization
problem.

(b) Gradient descent minimizes a function by moving along the
steepest descent direction.

(c) The best step size for gradient descent is 1.

(d) Several early neural net training algorithms are special cases of
SGD.

40 / 75

Gradient Computation for MLPs

∙ To apply gradient descent or SGD to minimize the loss function for
a neural net, we need to be able to compute the gradient of the
loss.

∙ In principle, this can be done using basic differentiation rules.

41 / 75

Revisiting the toy problem
∙ Assume that the observed output for the input (1, 1) is y = 2, and

we want to minimize the squared error L = (o − y)2.
x1

x2

h1

h2

o

1

2

1

1

1

1

∙ Recall: the output o is obtained using the following computation(︂
h1
h2

)︂
= 𝜎

(︂
W1

(︂
x1
x2

)︂)︂
, o = W2

(︂
h1
h2

)︂
,

where W1 =

(︂
w1,11 w1,12

w1,21 w1,22

)︂
=

(︂
1 2
1 1

)︂
, and

W2 =
(︀
w2,1 w2,2

)︀
=

(︀
1 1

)︀
.

∙ For 𝜕L
𝜕w2,1

, using the chain rule

𝜕L

𝜕w2,1
=

𝜕L

𝜕o

𝜕o

𝜕w2,1
= 2(o − y)h1.

42 / 75

∙ Derivatives like 𝜕L
𝜕w1,11

are much more complex (try it out).

∙ We see that even for this small MLP, it is tedious to compute the
gradient of the loss function.

43 / 75

Backpropagation

∙ The backpropagation algorithm provides an efficient way to
compute the gradient of the loss function of a feedforward neural
net, which is essential in gradient-based learning.
∙ The algorithm performs a forward pass and a backward pass
through the neural net

the forward pass propagates information from the input neurons to
the output neurons to compute the outputs of all neurons
the backward pass propagates information from the output neurons
to the input neurons to compute derivatives

44 / 75

∙ We illustrate the backpropagation algorithm on an MLP fw(x)
all hidden units are sigmoid units
there is one output neuron with identity activation function
the loss is the squared error (strictly speaking, 1/2 squared error)

L =
∑︁
i

1

2
(fw(xi)− yi)

2.

∙ Notations

P(j): the set of parents of unit j .
oi : the output of unit i . For an input neuron, oi denotes its input.
wij : weight on the connection from unit i to unit j .

45 / 75

Forward propagation

For each neuron j ,

oj ←

{︃
𝜎(
∑︀

i∈P(j) wijoi), if j is not the output neuron.∑︀
i∈P(j) wijoi , if j is the output neuron.

when all input oi ’s have been computed.

we don’t need to keep the neurons waiting for their inputs to be
ready.
instead, we compute the outputs one layer at a time from the input
layer to the output layer (as illustrated in the small numerical
example).

46 / 75

The backpropagation algorithm

∙ We need to compute the derivative gij of the loss function wrt to
each weight wij

∙ We only need to figure out how to do this for one example (x, y)
if there are multiple examples, the gradient is the sum of the
individual gradients computed on these examples

47 / 75

1: Compute all oi ’s.
2: For the output unit k,

𝛿k ← (ok − y).

3: For each hidden unit i ,

𝛿i ← oi (1− oi)
∑︁

j∈C(i)

wij𝛿j

when all input 𝛿j ’s have been computed.
4: For each connection (i , j),

gij ← 𝛿joi .

48 / 75

Derivation (optional)
∙ Notations

L(ok , y) =
1
2 (ok − y)2 is the loss function (neuron k is output).

sj =
∑︀

i∈P(j) wijoi is the weighted input sum for neuron j .

𝛿i = 𝜕L/𝜕si .

∙ For the output unit k ,

𝛿k =
𝜕L

𝜕sk
=

𝜕L

𝜕ok

𝜕ok
𝜕sk

= (ok − y).

This is because ok = sk (identity activation).

49 / 75

∙ Using the chain rule, we have

𝛿i =
𝜕L

𝜕si
=

∑︁
j∈C(i)

𝜕L

𝜕sj

𝜕sj
𝜕oi

𝜕oi
𝜕si

=
∑︁

j∈C(i)

𝛿jwijoi (1− oi).

This is because oi = 𝜎(si) and 𝜎′(si) = oi (1− oi).

∙ In addition, we have

𝜕L

𝜕wij
=

𝜕L

𝜕sj

𝜕sj
𝜕wij

= 𝛿joi .

50 / 75

Finishing off the small MLP example

∙ We label the nodes as follows
1

2

3

4

5

1

2

1

1

1

1

∙ We first compute the oi ’s, then 𝛿i ’s, and finally gij .

i oi 𝛿i

1 1 -
2 1 -
3 𝜎(3) 𝛿5w35o3(1− o3)
4 𝜎(2) 𝛿5w45o4(1− o4)
5 𝜎(3) + 𝜎(2) o5 − 1

(i , j) gij

(1, 3) o1𝛿3
(2, 3) o2𝛿3
(1, 4) o1𝛿4
(2, 4) o2𝛿4
(3, 5) o3𝛿5
(4, 5) o4𝛿5

51 / 75

Extensions

∙ We can extend the backpropagation algorithm to handle different
loss functions, activation functions and multiple output units.

∙ By choosing different loss functions and using multiple output
neurons, we can train an MLP for classification and density
estimation.

52 / 75

Automatic Differentiation (Autodiff)

∙ Backprop provides an efficient way to compute the gradient of the
error function for a neural network.
∙ It is helpful to understand the algorithm but it is not easy to
implement

you probably never want to implement it if you don’t have to
in the old days, it is not unusual that people spent hours to derive
expressions for the gradients, and then hours for implementation and
debugging...

53 / 75

∙ The good news is that for practical purposes, you don’t have to
implement gradient computation for neural nets

Many machine learning software platforms now provide automatic
differentiation (autodiff) tools
Autodiff automatically compute the gradients for you — you only
need to write code to evaluate the function

54 / 75

Checking Your Understanding

Which of the following statement is correct? (Multiple choice)

(a) It is generally easy to manually work out the formula for the
gradient of the loss of a neural net, and implement it from scratch.

(b) Backpropagation allows efficient computation of the gradient of
the loss function of an MLP wrt the network parameters in a
recursive manner.

(c) Autodiff allows us to implement one, get one free (implement
function evaluation code, get gradient evaluation code free).

55 / 75

Software Frameworks

56 / 75

∙ Some early software frameworks have become obsolete (e.g.
Theao, Caffe)

∙ TensorFlow, originally developed by Google Brain Team, is the
most popular deep learning frameworks, with a few high-level API
built on top of it (e.g. Sonnet, Keras, Swift, TFLearn)
∙ PyTorch, developed by Facebook, is a more recent player, but has
become a main competitor of TensorFlow.

Simple and flexible
We will discuss PyTorch in this lecture.

57 / 75

PyTorch

∙ PyTorch has a very polished Python interface, and a C++
frontend.
∙ PyTorch provides great support for

Tensor computing (like NumPy), with strong GPU acceleration
Deep neural networks, based on autodiff.

∙ See https://pytorch.org/ for details including installation
instructions, tutorials, and documentation.

58 / 75

https://pytorch.org/

Neural Networks in PyTorch

∙ PyTorch provides several packages

torch: a general-purpose tensor package with GPU support
torch.autograd: a package for automatic differentiation
torch.nn: a neural net library with common layers and loss functions
torch.optim: contains common optimization algorithms

∙ We cover basics of these packages in this lecture.

59 / 75

Tensor Computation

import torch

x, y, z = torch.zeros(3, 3), torch.ones(3, 3), torch.rand(3, 3)

print(x, y, z)

print(x + y)

print(y @ z) # matrix multiplication

print(z.int()) # convert to integer array

print(z.numpy()) # convert to numpy array

if torch.cuda.is_available(): # use GPU if available

y, z = y.cuda(), z.cuda()

print(y @ z)

60 / 75

Autodiff for f (x) = ‖x‖22

def f(x):

return torch.dot(x, x)

x = torch.ones(2, requires_grad=True)

y = f(x)

use the autograd library to compute all gradient information

y.backward()

print the gradient of the function with respect to x

print(x.grad)

Exercise: try replacing f with your favourite function.

61 / 75

OLS using PyTorch

∙ Recall: a linear regression model computes the function

f (x) = w⊤x,

where the input x = (1, x1, . . . , xd), with xi ’s being the features.

∙ This is a single layer MLP with one output neuron only.

∙ In OLS (ordinary least squares), we find w to minimize the MSE

min
w

1

n

∑︁
i

(w⊤xi − yi)
2

62 / 75

Data

def regression_data(n=500, d=2):

X = torch.rand(n, d)

w = torch.rand(d+1)

Y = X @ w[1:] + w[0] + torch.rand(n) * 0.1

return X, Y

X, Y = regression_data()

∙ The output is a perturbed linear function of the inputs.

63 / 75

First version

X = torch.cat([torch.ones(X.shape[0], 1), X], dim=1) # add 1

w = torch.zeros(X.shape[1], requires_grad=True)

for i in range(200):

loss = torch.mean((X @ w - Y)**2)

if w.grad is not None:

w.grad.zero_() # important: reset the stored gradient to 0

loss.backward()

w.data.add_(-0.5*w.grad.data)

print(w)

∙ We only use the autodiff feature in PyTorch, but control all other
aspects.

∙ Exercise: try the above code and use the closed-form formula to
compute w. Do you get the same answers? (You should)

64 / 75

Second version

import torch.optim as optim

from torch.autograd import Variable

X = torch.cat([torch.ones(X.shape[0], 1), X], dim=1) # add 1

w = Variable(torch.zeros(X.shape[1]), requires_grad=True)

optimizer = optim.SGD([w], lr=0.5, momentum=0)

for i in range(200):

optimizer.zero_grad()

loss = torch.mean((X @ w - Y)**2)

loss.backward()

optimizer.step()

print(w)

∙ We use the SGD optimizer provided by the optim package to zero
gradient and perform gradient update.

∙ Variables are wrappers for tensors, and they are often
interchangeble.

65 / 75

Third version

import torch.optim as optim

import torch.nn as nn

from torch.nn.modules.loss import MSELoss

Y = Y.reshape(-1, 1)

net = nn.Linear(2, 1)

optimizer = optim.SGD(net.parameters(), lr=0.5, momentum=0)

mse = MSELoss()

for i in range(200):

optimizer.zero_grad()

loss = mse(net(X), Y)

loss.backward()

optimizer.step()

for param in net.parameters():

print(param)

∙ We use the nn module to define our neural net for OLS, and use
the builtin MSE loss to compute loss.

66 / 75

Why Deep Architectures?

∙ It is known that any function can be approximated arbitrarily well
by a single hidden layer MLP (universal approximation theorems).

∙ Why do we still need to care about deep neural networks?

67 / 75

Inspiration from Nature

The primate visual cortex is hierarchical

Kruger et al., Deep hierarchies in the primate visual cortex: What can we learn for computer vision?, 2013

68 / 75

Deeper Can Be More Compact

∙ When a function can be compactly represented by a deep network,
it may need a very large shallow network to represent it.

∙ E.g. There are functions computable with a depth k network
consisting of a polynomially many perceptron units that require
exponentially many perceptron units when using a depth k − 1
network.

69 / 75

Features: Engineering to Learning

Traditional learning: handcrafted features + classifier learning

∙ Many traditional learning algorithms can be seen as neural
networks.

∙ They build classifiers using handcrafted features.

70 / 75

Deep learning: feature learning + classifer learning

input
layer

hidden
layer

hidden
layer

hidden
layer

hidden
layer

hidden
layer

output
layer

∙ Deep learning uses deep architectures to additionally learn features.
∙ Deeper layers build abstract representations of previous layers.

e.g. pixels → edges → noses, eyes, ears → face

71 / 75

A Demo

∙ We want to distinguish points on two spirals.

∙ Each unit can be visualized by drawing a heat map for its output.

∙ Try different # of hidden layers: 1, 2, 3, 4, 5, 6.

72 / 75

http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=8&seed=0.78122&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=8,8&seed=0.78122&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=8,8,8&seed=0.78122&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=8,8,8,8,8,8&seed=0.78122&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=8,8,8,8,8&seed=0.78122&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=8,8,8,8,8,8&seed=0.78122&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

∙ This trained 6-layer MLP is able to learn fairly complex decision
boundaries.

∙ While neurons in shallow layers represent simple features (e.g.
straight lines), neurons in deeper layers pick up useful high-level
features (e.g. parts of the spirals).

73 / 75

Checking Your Understanding

Which of the following statement is correct? (Multiple choice)

(a) PyTorch supports tensor computing and deep neural nets.

(b) Deep neural nets can possibly learn complex features.

(c) Deep neural nets are always larger than an equivalent shallower
networks.

74 / 75

What You Need to Know

∙ Multilayer perceptrons (aka multilayer feedforward networks)

Specifying an MLP: structure and activation function
Forward propagation (compute output for a given input)
Backpropagation for gradient computation

∙ Gradient-based learning

Gradient descent and stochastic gradient descent
Backpropagation and automatic differentiation

∙ Implementing neural nets using PyTorch: torch, torch.nn,
torch.autograd, torch.optim

∙ Motivations for deep networks: inspiration from nature, more
compact representation, feature learning.

75 / 75

