
Review

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 54



What if you only want to remember one thing...

To apply machine learning well, you need to understand how they
work.

2 / 54



Good practices
∙ Implement (some of) the algorithms yourself

this forces you to pay close attention to details

∙ Stand on the shoulders of the giants

many excellent machine learning libraries (e.g. sklearn, PyTorch)
they can help you to be very productive

∙ Be creative

each algorithm has its own strengths and weaknesses
identify the needs/challenges of your applications,
choose/mix-and-match/tweak algorithms to address them

3 / 54



What We Have Gone Through

How to build good ML models
∙ Making use of a crowd ⇒ Week 7 Ensemble methods

each of us is a biological prediction model trained on different datasets...

∙ Using a neural network ⇒ Week 8 and 9 Neural networks
brain-inspired models, some are good for images...

∙ Making a robust model ⇒ Week 10 Robust machine learning
malicious users, outliers,...

∙ Asking for explanations ⇒ Week 11 Interpretable machine learning
...let’s ask the machines for explanations...

∙ Exploiting prior beliefs ⇒ Week 12 Bayesian methods

This review lecture: We highlight some key ideas and important take-aways.

4 / 54



Ensemble Methods

∙ Ensembles can be much more expressive than basis models.

∙ Two approaches: independent methods, dependent methods

∙ Bagging: algorithm, model selection, why it works

∙ Random forest: algorithm, why it works, hyperparameters

∙ Boosting: weak learning and strong learning, AdaBoost

∙ Tuning ensemble methods: class of basis models, size of ensemble

5 / 54



Ensemble > Basis Functions

∙ An ensemble of basis models can often be used to represent a more
complex functional relationship than each individual model can do.
∙ This is true even the basis models are “simple” (e.g. threshold
classifiers or decision stumps).

decision stump = one-level DT

6 / 54



Ensemble Learning
∙ Independent methods

Each model is trained independently of others.
e.g. bagging, random forest.

∙ Dependent methods

A model in the ensemble makes use of previously trained models.
e.g. AdaBoost.

7 / 54



Bagging

Ddata

D1 D2
. . . DB

bootstrap
samples

M1 M2
. . . MB

basis
models

M̄
combined
model

(Classifcation) M̄(x) = majority{M1(x), . . . ,MB(x)},

(Regression) M̄(x) =
1

B

B∑︁
i=1

Mi (x)

8 / 54



Why bagging works

∙ The bias-variance decomposition

∙ Bagging reduces the variance while keeping the bias roughly the
same

9 / 54



Random Forests

∙ Random forest is

a modified bagging method for DTs,
designed to further reduce variance by building a collection of
decorrelated trees.

∙ RF and bagging with DTs differs only in how a decision tree is
trained on a bootstrap sample

Bagging: for each node, choose the splitting variable from all d
features.
RF: for each node, first randomly sample m < d features, then
choose the splitting variable among them.

∙ This subtle difference leads to further variance reduction.

10 / 54



Boosting

∙ Problem: if we have a weak learner, can we use it to build a strong
learner?

∙ Surprisingly, the answer is yes, and an algorithm for converting a
weak learner to a strong learner is called a boosting algorithm.

∙ Many boosting algorithms have been developed.

11 / 54



AdaBoost (Adaptive Boosting)

Problem

∙ Given: a training set {(x1, y1), . . . , (xn, yn)} ∈ 𝒳 × {−1,+1}, and
a set G ⊆ {−1,+1}𝒳 of simple/weak/basis classifiers.

∙ AdaBoost produces a score model

F (x) =
T∑︁
t=1

𝛼t ft(x),

where each 𝛼t is non-negative and each ft ∈ G .

∙ F classifies an instance x to the class sgn(F (x)).

12 / 54



AdaBoost

1: F0(x) = 0.
2: Set w1(i) =

1
n for each i ∈ [n].

3: for t = 1 to T do
4: Train a classifier ft ∈ G on the weighted dataset {(wi , xi , yi )}.
5: 𝜖t ←

∑︀n
i=1 wt(i)I (ft(xi ) ̸= yi ).

6: 𝛼t ← 1
2 ln

1−𝜖t
𝜖t

.
7: Ft ← Ft−1 + 𝛼t ft .
8: Set wt+1(i) ∝ exp(−yiFt(xi )) for each i ∈ [n].

9: F ← FT/
∑︀T

t=1 𝛼t .

Essentially: sequentially reweigh examples and train new basis models.

13 / 54



Neural Networks

∙ Multilayer perceptrons (aka multilayer feedforward networks)

Specifying an MLP: structure and activation function
Forward propagation (compute output for a given input)
Backpropagation for gradient computation

∙ Gradient-based learning

Gradient descent and stochastic gradient descent
Backpropagation and automatic differentiation

∙ Implementing neural nets using PyTorch: torch, torch.nn,
torch.autograd, torch.optim

∙ Motivations for deep networks: inspiration from nature, more
compact representation, feature learning.

14 / 54



Convolutional neural nets

∙ They are special types of MLPs with sparse connections between
layers.

∙ Three key architectural ideas: local receptive fields, weight sharing,
sub-sampling.
∙ Two special types of layers

Convolutional layers
Sub-sampling layers

15 / 54



What are ANNs?

∙ An ANN is a network of basic computational units called (artificial) neurons

∙ The connection between two neurons may allow information to be sent in one
direction or in both directions.

∙ Each neuron receives inputs along the incoming connections, and performs

computes an output using simple transformations.

Typically, output is a simple transformation of a linear function of the inputs.

∙ We cover basic ANNs in this course.

More about ANNs: STAT3007/7007 Deep Learning

16 / 54



Simplest Neural Networks

Linear regression
f (x) = w⊤x

x0 = 1

x1

x2

...

xd

Σ

w1

w2

wd

w0

x⊤w

Perceptron

f (x) =

{︃
+1, w⊤x > 0,

−1, otherwise.

x0 = 1

x1

x2

...

xd

Σ

w1

w2

wd

w0

x⊤w y = sgn(x⊤w)

Binary logistic regression
f (x) = p(y = 1 | x) =
𝜎(w⊤x) = 1

1+e−w⊤x

x0 = 1

x1

x2

...

xd

Σ

w1

w2

wd

w0

x⊤w 𝜎(x⊤w)

17 / 54



Multilayer Perceptron (MLP)

input
layer

hidden
layer

hidden
layer

output
layer

18 / 54



Regression Networks

∙ Consider a regression problem of predicting the value of an input
x ∈ Rd .

∙ We usually design a neural net with a single output o = fw(x),
where w consists of all the network parameters.

∙ Given a training set (x1, y1), . . . , (xn, yn) ∈ Rd × R,
training/learning the neural net often amounts to minimizing the
quadratic loss, or mean squared error (MSE)

min
w

L(w)
def
=

1

n

n∑︁
i=1

(fw(xi )− yi )
2.

19 / 54



Classification Networks

∙ Consider a classification problem of classifying an input x ∈ Rd to
one of C classes.

∙ We usually design a neural net fw : Rd → RC , with each output
being the score for a class.

∙ The class with the largest score is the predicted class.

∙ Given a training set (x1, y1), . . . , (xn, yn) ∈ Rd × [C ], learning the
neural net often amounts to minimizing the log-loss

min
w

L(w)
def
=

1

n

n∑︁
i=1

− ln p(yi | xi ,w),

where p(yi | xi ,w) = eoi,yi /
∑︀C

c=1 e
oic , with (oi1, . . . , oiC ) being the

network’s output vector for xi .

20 / 54



Neural Network Learning

∙ Learning a neural net fw(x) ⇒ loss minimization

min
w

L(w) =
1

n

∑︁
i

Li (w),

where Li (w) measures how the model fw fits example i .

e.g., in regression , Li (w) = (fw(xi )− yi )
2.

∙ Gradient descent

choose w0

for t ≥ 0, wt+1 = wt − 𝜂t ∇ L(wt)

where 𝜂t ≥ 0 is a step size (learning rate) to be chosen.
∙ Stochastic Gradient Descent (SGD)

choose w0

for t ≥ 0, wt+1 = wt − 𝜂t g̃t , where g̃t =
1
|S|

∑︀
i∈S ∇ Li (w), with S

being a random subset of 1, . . . , n.

21 / 54



Backpropagation

∙ The backpropagation algorithm provides an efficient way to
compute the gradient of the loss function of a feedforward neural
net, which is essential in gradient-based learning.
∙ The algorithm performs a forward pass and a backward pass
through the neural net

the forward pass propagates information from the input neurons to
the output neurons to compute the outputs of all neurons
the backward pass propagates information from the output neurons
to the input neurons to compute derivatives

22 / 54



Backpropagation: squared error, sigmoid network

1: Compute all oi ’s.
2: For the output unit k,

𝛿k ← (ok − y).

3: For each hidden unit i ,

𝛿i ← oi (1− oi )
∑︁

j∈C(i)

wij𝛿j

when all input 𝛿j ’s have been computed.
4: For each connection (i , j),

gij ← 𝛿joi .

23 / 54



Automatic Differentiation (Autodiff)

∙ Autodiff is a generalization of backpropagation
∙ Autodiff automatically compute the gradients for you

you only write function evaluation code, autodiff transforms it to
gradient computation code

∙ Many machine learning software platforms now provide automatic
differentiation (autodiff) tools

24 / 54



Neural Networks in PyTorch

∙ PyTorch provides several packages

torch: a general-purpose tensor package with GPU support
torch.autograd: a package for automatic differentiation
torch.nn: a neural net library with common layers and loss functions
torch.optim: contains common optimization algorithms

∙ We cover basics of these packages in this lecture.

25 / 54



OLS using PyTorch

import torch.optim as optim

import torch.nn as nn

from torch.nn.modules.loss import MSELoss

Y = Y.reshape(-1, 1)

net = nn.Linear(2, 1)

optimizer = optim.SGD(net.parameters(), lr=0.5, momentum=0)

mse = MSELoss()

for i in range(200):

optimizer.zero_grad()

loss = mse(net(X), Y)

loss.backward()

optimizer.step()

for param in net.parameters():

print(param)

26 / 54



Convolutional Neural Nets (CNNs)

∙ CNNs are multilayer feedforward neural networks

they are MLPs where the weights have been constrained to mimic
how biological vision works

∙ Three architectural ideas

Local receptive fields
Shared weights
Spatial or temporal sub-sampling

These ensure some degree of shift, scale, and distortion invariance.

27 / 54



Convolution

∙ Convolution = sliding inner product

input

3 9 2 4

7 7 3 1

0 3 6 9

8 1 2 0

2 2

1 2

output

45 35 17

34 35 32

16 23 32

∙ Stride, zero-padding, dilation, and bias

∙ Convolution beyond 2D

28 / 54



Sub-sampling

∙ Sub-sampling (or pooling) is very similar to convolution.

∙ In average pooling, when we slide the filter through the input, we
simply take the average of the input elements being scanned as the
output.

∙ In max pooling, we replace average by max.

∙ The default stride is equal to the filter size (i.e. we do not pool the
same element twice).

29 / 54



LeNet-5 (1998)

30 / 54



Robust Machine Learning

∙ Robust machine learning methods try to produce models that work
well with ‘hard’ data.

two types of hard data: outliers, adversarial examples

∙ Robust methods for outliers

Filtering before learning
Subsampling methods: Theil-Sen, RANSAC
M-estimators: LAD, Huber regression

∙ Robust methods for adversarial examples

Data augmentation approach
Adversarially robust learning objective

31 / 54



Outliers

∙ Outliers are unusual or atypical observations

32 / 54



Adversarial examples

∙ Can you see any difference between the two panda images?

∙ Adversarial examples are imperceptibly different from examples
correctly classified by a model, but they are incorrectly classified.

∙ There are algorithms for generating adversarial examples

∙ An adversary can use adversarial examples to trick your system.

Goodfellow, Shlens, and Szegedy, Explaining and harnessing adversarial examples, 2015

33 / 54



Learning with Outliers

Approaches

∙ Filter outliers first, then build a model
∙ Subsampling methods

make use of multiple random subsamples to find a robust model
we cover Theil-Sen estimators and RANSAC

∙ Robust loss methods (aka M-estimators in statistics)

make use of a loss function which is robust against outliers
we cover ℓ1 regression and Huber regression

34 / 54



Subsampling Methods

Theil-Sen and RANSAC
Theil-Sen RANSAC

Ddata

D1 D2
. . . DN

subsamples

M1 M2
. . . MN

models

M̄
geometric
median

Ddata

D1 D2
. . . DN

subsamples

M1 M2
. . . MN

outlier
detector

M ′
1 M ′

2
. . . M ′

N

inlier
models

M̄
max

Theil-Sen and RANSAC are implemented in sklearn.linear_model as
TheilSenRegressor and RANSACRegressor respectively.

35 / 54



M-estimators

∙ Different losses

(L2) L2(r) = r2

(L1) L1(r) = |r |

(Huber) L𝛿(r) =

{︃
1
2 r

2, |r | ≤ 𝛿,

𝛿
(︀
|r | − 1

2𝛿
)︀
, otherwise

∙ Different algorithms

OLS: minimizes L2 loss
LAD (least absolute deviations): minimizes L1 loss
Huber regression: minimizes Huber loss

36 / 54



37 / 54



Outliers ̸= Liars, out

https://xkcd.com/539/

38 / 54

https://xkcd.com/539/


Adversarial Examples

∙ Adversarial examples exist for all kinds of machine learning models.

∙ Defending against adversarial examples is hard.

39 / 54



Interpretable Machine Learning

∙ An interpretation

connects the abstract/unfamiliar to the obvious/familiar.
often tells part of the truth

∙ Approaches to make machine learning models interpretable

Built-in vs post hoc, white-box vs black-box, model-specific vs
model-agnostic

∙ Some basic methods

interpretable models, surrogate method, variable importance, low
dimensional approximation

40 / 54



What is an interpretation?

∙ An interpretation connects the abstract/unfamiliar to the
obvious/familiar.

input
layer

hidden
layer

output
layer

interprete

abstract obvious

41 / 54



Interpretation = Misinterpretation?

∙ Each interpretation often tells us part of the truth, and we may
need to use several methods to form a more complete picture.

42 / 54



Approaches

∙ Various approaches have been taken to make machine learning
models interpretable, and they can be categorized in various ways.
∙ Built-in vs post hoc

Built-in: models are designed to be interpretable (e.g. linear
regression)
Post hoc: models are analyzed for interpretability (e.g. permutation
importance)

∙ White-box vs black-box

White-box: everything about the model is needed (e.g. linear
regression model weights)
Black-box: only partial information about the model is needed (e.g.
permutation importance)

43 / 54



∙ Model specific vs model agnostic

Model-specific: designed for specific models only (e.g. linear
regression model weights)
Model-agnostic: designed for generic learning approaches (e.g.
permutation importance)

44 / 54



Some basic methods

∙ Interpretable models: linear regression, logistic regression, decision
trees

∙ Surrogate model method

∙ Variable importance: Gini importance, permutation importance

∙ Low dimensional approximation

45 / 54



Bayesian Learning

∙ Bayesian learning overview
∙ Gaussian processes (GPs)

GPs as a generalization of multivariate Gaussians: mean function
and kernel function
GPs as distributions on functions
computation of marginal distributions and conditional distributions

∙ GP regression

noisy-free and noisy observation models
prediction
model selection (maximum likelihood learning of hyperparameters)

∙ GP classification

∙ Implementing GPs in sklearn

46 / 54



Bayesian Learning Overview

Bayesian learning

∙ In Bayesian learning, we learn a distribution on all the models in Θ.

∙ Specifically, we assume a prior distribution p(𝜃) on Θ, and given a
dataset D, we compute a posterior

posterior⏞  ⏟  
p(𝜃 | D) = p(𝜃)p(D | 𝜃)/Z ∝

prior⏞ ⏟ 
p(𝜃)

likelihood⏞  ⏟  
p(D | 𝜃),

where Z is the normalization constant.

∙ The posterior distribution p(𝜃 | D) can be used in various ways
when performing inference.

47 / 54



Inference problems

∙ Compute the MAP (maximum a posterior) model:

𝜃MAP = argmax
𝜃∈Θ

p(𝜃 | D).

∙ Compute the (posterior) predictive distribution:

p(y | D, x) =

∫︁
p(y | 𝜃, x)p(𝜃 | D)d𝜃.

∙ Compute posterior mean and variance of Y given x :

posterior mean 𝜇x = E(Y | x ,D) =

∫︁
yp(y | D, x)dy

posterior variance 𝜎2
x = Var(Y | x ,D) =

∫︁
(y − 𝜇x)

2p(y | D, x)dy

48 / 54



From SVM to Gaussian Processes

(GPs)

SVM (RBF kernel with 𝛾 = 2000) Gaussian process (RBF kernel)

∙ SVMs and GPs both use regressors of the form

f (x) =
∑︁
i

𝛼ik(xi , x),

but GPs also provides a distribution on the output.

49 / 54



Gaussian Processes (GPs)

GPs generalize multivariate Gaussian distributions

∙ A GP is a collection of random variables such that any finite subset
of which follows a (multivariate) Gaussian distribution.

∙ A GP can be specified in terms of the mean function m and the
covariance function (aka kernel) k , defined by

m(Y ) = E(Y ),

k(Y ,Y ′) = cov(Y ,Y ′),

where Y and Y ′ are any two random variables in the GP

50 / 54



GPs as distributions on functions

∙ Let the random variable Y (x) denote the output for an input
x ∈ Rd , and assume that {Y (x) : x ∈ Rd} is a GP.

∙ Define a random function F such that F (x) = Y (x), then the GP
is a distribution for F :

F ∼ GP(m, k),

where m and k are the mean function and the covariance function
of the GP.

51 / 54



Posterior predictive distribution

∙ Observation noise 𝜖 ∼ N(0, 𝜎2):

Y ′ | X′,X, y ∼ N
(︀ posterior mean⏞  ⏟  
𝜇X′
t×1

+ KX′,X
t×n

(KX,X + 𝜎2I )−1

n×n
(y − 𝜇X)

n×1
, (1)

posterior covariance⏞  ⏟  
KX′,X′

t×t
− KX′,X

t×n
(KX,X + 𝜎2I )−1

n×n
KX,X′

n×t

)︀
. (2)

52 / 54



∙ Model hyperparameters can be learned using maximum likelihood
estimation.

∙ Commonly-used kernels: constant kernel, linear kernel, squared
exponential kernel, Matérn kernel.

∙ Rules for constructing new kernels.

53 / 54



Final Remark

RF is an example of a tool that is useful in doing analyses of scientific data.

But the cleverest algorithms are no substitute for human intelligence and knowledge
of the data in the problem.

Take the output of random forests not as absolute truth, but as smart computer
generated guesses that may be helpful in leading to a deeper understanding of the
problem.

Leo Breiman and Adele Cutler

Apply the same philosophy to other machine learning algorithms...

How to do this effectively:

Understand how the algorithms work, and follow good practices:
Implement (some of) the algorithms yourself
Stand on the shoulders of the giants
Be creative

54 / 54


