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Learning Problems

Supervised Learning

∙ Fit a model relating x and y given a dataset (x1, y1), . . . , (xn, yn)

∙ In a classification problem, the output is discrete.

( , 5) ... ( , 4)

( , 1) ... ( , 2)
classifier

∙ In a regression problem, the output is real-valued.

Terminology

∙ x : input, independent variables, covariate vector, observation, predictors,
explanatory variables, features.

∙ y : output, dependent variable, response.
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Semi-supervised learning

∙ Same as supervised learning, except that the dataset additionally
contain unlabeled inputs x ′1, x

′
2, . . . , x

′
m.

( , 5) ... ( , 4)

...
classifier

∙ Useful when it is expensive to label the inputs.
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Unsupervised Learning

∙ Only the inputs are given, but not the outputs
∙ Unsupervised learning methods are used for various purposes, e.g.

Clustering: divide data points into groups

...
......

Density estimation: estimate a distribution given a sample
Dimension reduction: find a low-dimensional representation of data
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Reinforcement learning

∙ In reinforcement learning, the agent learns how to act in an
unknown environment by interacting with the environment.

∙ At time t, the agent executes an action at , and the environment
provides its state st and a reward rt as the feedback.

Agent

Environment

atst ,rt

∙ The goal is to learn a policy (mapping from state to action) that
maximizes the expected rewards.

∙ Reinforcement learning is hard because the feedback is limited and
rewards may be delayed.
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The Machine Learning Approach
∙ Formulating and solving a problem as a machine learning problem

∙ Example: learning a Bernoulli distribution

∙ Example: learning a Gaussian distribution
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How A Learning Algorithm Works

∙ Given some training data, we choose a model class.
∙ We then choose a model that fits the training data well according
to some measure.

Usually, the model has certain number of parameters, and choosing
the values of these parameters can be cast as a numerical
optimization problem.

∙ Once we have a trained model, we can use it to make predictions
on new data.
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Learning a Bernoulli Distribution
I pick a coin with the probability of heads being 𝜃. I flip it 100 times for
you and you see a dataset D of 70 heads and 30 tails, can you learn 𝜃?

Maximum likelihood estimation
The likelihood of 𝜃 is

P(D | 𝜃) = 𝜃70(1− 𝜃)30.

Learning 𝜃 amounts to maximizing the likelihood.

𝜃ml = argmax
𝜃

P(D | 𝜃)

= argmax
𝜃

lnP(D | 𝜃)

= argmax
𝜃

(70 ln 𝜃 + 30 ln(1− 𝜃)).

Note that we have switched to log-likelihood, which is typically easier to
work with.
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𝜃ml = argmax
𝜃

(70 ln 𝜃 + 30 ln(1− 𝜃)).

Set derivative of log-likelihood to 0,

70

𝜃
− 30

1− 𝜃
= 0,

we have

𝜃ml = 70/(70 + 30).
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Regularization
If your friend told you that he has played the game with me and his
estimate is 0.6, and you want to make use of this prior knowledge...

𝜃 = argmax
𝜃

⎛⎜⎝70 ln 𝜃 + 30 ln(1− 𝜃)−

regularizer⏞  ⏟  
𝜆(𝜃 − 0.6)2

⎞⎟⎠
∙ A regularizer is a term used to prevent fitting to irregularities in
data.

∙ Here the regularizer tries to rely on your friend’s estimate to
combat irregularities.

∙ A larger 𝜆 > 0 means you have more trust for your friend’s
estimate.
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Learning a Gaussian distribution

I pick a Gaussian N(𝜇, 𝜎2) and
give you a bunch of data D =
{x1, . . . , xn} independently drawn
from it. Can you learn 𝜇 and 𝜎.

x

f (x)

The probability density function (PDF) of N(𝜇, 𝜎2) is

f (x | 𝜇, 𝜎) = 1

𝜎
√
2𝜋

e−
(x−𝜇)2

2𝜎2 .
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Maximum likelihood estimation

ln f (D | 𝜇, 𝜎) = ln

(︂
1

𝜎
√
2𝜋

)︂n

exp

(︃
−
∑︁
i

(xi − 𝜇)2

2𝜎2

)︃

= −n ln(𝜎
√
2𝜋)−

∑︁
i

(xi − 𝜇)2

2𝜎2
.

Set derivative w.r.t. 𝜇 to 0,∑︁
i

xi − 𝜇

𝜎2
= 0 ⇒ 𝜇ml =

1

n

∑︁
i

xi

Set derivative w.r.t. 𝜎 to 0,

−n

𝜎
+

(xi − 𝜇)2

𝜎3
= 0 ⇒ 𝜎2

ml =
1

n

n∑︁
i=1

(xi − 𝜇ml)
2.
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Regularization
If your friend told you that he has played the game with me and he
knows 𝜎 and his estimate of 𝜇 is c, and you want to make use of this
prior knowledge...

�̂� = argmax
𝜇

⎛⎜⎜⎝ln f (D | 𝜇)−

regularizer⏞  ⏟  
1

2𝜎2
(𝜇− c)2

⎞⎟⎟⎠ =
1

n + 1
(c +

∑︁
i

xi ).

∙ The regularized estimate �̂� has a smaller variance than 𝜇ml .

∙ However, �̂� has a larger bias (expected difference between the
estimate and the true mean) than 𝜇ml .
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Summing Up...

Learning is...

∙ Collect some training data, e.g. coin flips.

∙ Choose a hypothesis class, e.g. Bernouli distribution.

∙ Choose a loss function, e.g. negative log-likelihood.

∙ Choose an optimization procedure, e.g. set derivative to 0.

Remarks
∙ Just like human learning, we want to learn something generally
applicable beyond what we have seen.

i.e., the model should work well not only on the training data, but
on new test data too

∙ Regularization may be used to encode prior knowledge.

Statistics, optimization and regularization provide powerful tools for
formulating and solving machine learning problems.
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Regression
∙ Ordinary least squares

∙ Ridge regression

∙ Basis function method

∙ Nearest neighbor regression

∙ Kernel regression
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Ordinary Least Squares

Find a best fitting hyperplane for (x1, y1), . . . , (xn, yn) ∈ Rd × R.
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∙ OLS finds a hyperplane minimizing the sum of squared errors (SSE)

𝛽n = argmin
𝛽∈Rd

n∑︁
i=1

(x⊤i 𝛽 − yi )
2.

∙ The solution to OLS is

𝛽n = (X⊤X)−1X⊤y,

where X is the n × d matrix with xi as the i-th row, and
y = (y1, . . . , yn)

⊤.

The formula holds when X⊤X is non-singular (also see slide 20). When X⊤X is

singular, there are infinitely many possible values for 𝛽n. They can be obtained by

solving the linear systems (X⊤X)𝛽 = X⊤y.
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Proof. The sum of squared error can be written as

Rn(𝛽) =
n∑︁

i=1

(x⊤i 𝛽 − yi )
2 = ||X𝛽 − y||22.

Set the gradient of Rn to 0

∇Rn = 2X⊤(X𝛽 − y) = 0,

we have

𝛽n = (X⊤X)−1X⊤y.
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Least Squares as MLE

∙ Consider the class of conditional distributions {p𝛽(Y |X ) : 𝛽 ∈ Rd},
where

p𝛽(Y | X = x) = N(Y ; x⊤𝛽, 𝜎2)
·
=

1√
2𝜋𝜎

e−(Y−x⊤𝛽)2/2𝜎2
,

with 𝜎 being a constant.

∙ The (conditional) likelihood of 𝛽 is

Ln(𝛽) = p𝛽(y1 | x1) . . . p𝛽(yn | xn).

∙ Maximizing the likelihood Ln(𝛽) gives the same 𝛽n as given by the
method of least squares.
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Ridge Regression

∙ When collinearity is present, the matrix X⊤X may be singular or
close to singular, making the solution unreliable.

∙ We see a valley if we plot the SSE, or a “ridge” in the
log-likelihood (recall the MLE interpretation for least squares)
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∙ Ridge regression fixes the “ridge” by adding a regularizer 𝜆||𝛽||22 to
OLS objective, where 𝜆 > 0 is a fixed constant.

𝛽n = argmin
𝛽∈Rd

(︁ n∑︁
i=1

(x⊤i 𝛽 − yi )
2 +

quadratic/ℓ2 regularizer⏞  ⏟  
𝜆||𝛽||22

)︁
.

∙ If we plot the regularized SSE, we see a unique minimizer
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∙ By setting the gradient of the objective function to 0, we obtain

𝛽n = (𝜆I + X⊤X)−1X⊤y.

The matrix 𝜆I + X⊤X is non-singular, and thus there is always a
unique solution.

∙ When 𝜆 is large, the model fits less well on training data, thus the
regularizer helps in preventing the model from fitting to
irregularities in the training data.
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Regression with a Bias

∙ So far we have only considered hyperplanes of the form y = x⊤𝛽,
which passes through the origin (green line).

∙ Usually, hyperplanes with a bias term (red line), that is,
hyperplanes of the form y = x⊤𝛽 + b is more appropriate.

∙ The bias may need to be treated differently from the linear
coefficients.
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OLS with a bias term

∙ For OLS, we can simply choose the best fitting hyperplane with a
bias term

(bn, 𝛽n) = argmin
b∈R,𝛽∈Rd

n∑︁
i=1

(x⊤i 𝛽 +

bias⏞ ⏟ 
b − yi )

2.

∙ We can reduce it to regression without a bias term by adding a

dummy feature: simply replace x⊤𝛽 + b with (1 x⊤)

(︂
b
𝛽

)︂
.
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Ridge regression with a bias term

∙ For ridge regression, we again have a regularizer for the linear
coefficients, but we do not regularize the bias term.

(bn, 𝛽n) = argmin
b∈R,𝛽∈Rd

(︁ n∑︁
i=1

(x⊤i 𝛽 + b − yi )
2 + 𝜆||𝛽||22

)︁
.

∙ Again, we can solve it by reducing it to ridge regression without a
bias term.

Let x̂i = xi − x̄, and ŷi = yi − ȳ , where x̄ =
∑︀n

i=1 xi/n, and
ȳ =

∑︀n
i=1 yi/n.

Then we can show that

𝛽n = argmin
𝛽∈Rd

(︁ n∑︁
i=1

(x̂⊤i 𝛽 − ŷi )
2 + 𝜆||𝛽||22

)︁
,

bn = ȳ − x̄⊤𝛽n.
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Basis Function Method

We can use linear regression to learn nonlinear functions

∙ Choose some basis functions g1, . . . , gk : Rd → R.

∙ Transform each input x to (g1(x), . . . , gk(x)).

∙ Perform linear regression on the transformed data.

Examples

∙ Linear regression: use basis functions g1, . . . , gd with gi (x) = xi ,
and g0(x) = 1.

∙ Quadratic functions: use basis functions of the above form,
together with basis functions of the form gij(x) = xixj for all
1 ≤ i ≤ j ≤ d .
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k nearest neighbor (kNN)

Given a test example x, kNN predicts

hn(x) = avg{yi : xi ∈ Nk(x)},

that is, the average of the values of the set Nk(x) of the k nearest
neighbors of x in the training data.

∙ (Curse of dimensionality) The number of samples required for
accurate approximation is exponential in the dimension.

∙ kNN is a non-parametric method, while linear regression is a
parametric method.
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∙ In the figure above, we fit 1-NN regressor given five training points.

∙ The learned function is a piecewise-linear function passing through
all the training points.
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Your turn

∙ Given three training examples with (x , y) being (1, 1), (2, 2), (4, 4),
draw the function learned by 1NN.

∙ How does the function change if an additional training example
(5, 5) is provided?

∙ How does the function change if an additional training example
(3, 3) is provided?
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Kernel Regression

Given a test example x, kernel regression predicts

hn(x) =
n∑︁

i=1

K (x, xi )yi
⧸︁ n∑︁

i=1

K (x, xi ),

where K (x, x′) is a function measuring the similarity between x and x′,
and is often called a kernel function.

Example kernel functions

∙ Gaussian kernel K𝜆(x, x
′) = 1

𝜆 exp(− ||x′−x||22
2𝜆 ).

∙ kNN kernel Kk(x, x
′) = I (||x′ − x|| ≤ maxx′′∈Nk (x) ||x

′′ − x||). Note
that this kernel is data-dependent and non-symmetric.

31 / 34



Parametric vs. Nonparametric

Methods

∙ Parametric methods use models with fixed number of parameters

e.g. OLS, ridge regression

∙ Nonparametric methods use data-dependent models with a
increasing number of parameters as more data becomes available.

e.g. kNN, kernel regression

∙ Nonparametric methods can possibly represent more complex
functions, but they often requires a lot of data and computation.
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Your turn

Which of the following statement is correct? (Multiple choice)

(a) In ridge regression, we should penalize a large bias term.

(b) Ridge regression always has a unique solution.

(c) A non-parametric regression method has no parameters.

(d) In machine learning, model learning is often formulated as an
optimization problem.
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What You Need to Know...

∙ Types of learning problems

∙ The machine learning approach

∙ Parametric regression: OLS, ridge regression, basis function
method.

∙ Non-parametric regression: kNN, kernel regression.
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