Regression

Nan Ye

School of Mathematics and Physics
The University of Queensland

1/34



Learning Problems

Supervised Learning
¢ Fit a model relating x and y given a dataset (x1,y1),- .-, (Xn, ¥n)

® |n a classification problem, the output is discrete.
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® In a regression problem, the output is real-valued.

Terminology

® x: input, independent variables, covariate vector, observation, predictors,
explanatory variables, features.

® y: output, dependent variable, response.
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Semi-supervised learning

® Same as supervised learning, except that the dataset additionally
contain unlabeled inputs xi, x5, ..., x;
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® Useful when it is expensive to label the inputs.
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Unsupervised Learning

® Only the inputs are given, but not the outputs
® Unsupervised learning methods are used for various purposes, e.g.
m Clustering: divide data points into groups
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m Density estimation: estimate a distribution given a sample
m Dimension reduction: find a low-dimensional representation of data
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Reinforcement learning

® In reinforcement learning, the agent learns how to act in an
unknown environment by interacting with the environment.

e At time t, the agent executes an action a;, and the environment
provides its state s; and a reward r; as the feedback.

St e

Environment

® The goal is to learn a policy (mapping from state to action) that
maximizes the expected rewards.

at

® Reinforcement learning is hard because the feedback is limited and
rewards may be delayed.
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The Machine Learning Approach

® Formulating and solving a problem as a machine learning problem
® Example: learning a Bernoulli distribution

® Example: learning a Gaussian distribution
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How A Learning Algorithm Works

® Given some training data, we choose a model class.
® We then choose a model that fits the training data well according
to some measure.

m Usually, the model has certain number of parameters, and choosing
the values of these parameters can be cast as a numerical
optimization problem.

® Once we have a trained model, we can use it to make predictions
on new data.
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Learning a Bernoulli Distribution

| pick a coin with the probability of heads being 6. | flip it 100 times for
you and you see a dataset D of 70 heads and 30 tails, can you learn 67

Maximum likelihood estimation
The likelihood of 8 is

P(D|6)=07(1—0)%*.
Learning # amounts to maximizing the likelihood.
Omi = arg;nax P(D | 6)
= arg;nax InP(D | 0)

= argmax (70In @ + 301In(1 — 9)).
0

Note that we have switched to log-likelihood, which is typically easier to

work with.
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Omi = argmax (70In 6 + 301In(1 — 9)).
0

Set derivative of log-likelihood to 0,

70 30
v 10"

we have

Om = 70/(70 + 30).
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Regularization
If your friend told you that he has played the game with me and his
estimate is 0.6, and you want to make use of this prior knowledge...

regularizer

~ /—/ﬁ
0 = argmax | 701n 6 4 301In(1 — 0) — \(0 — 0.6)°
0

® A regularizer is a term used to prevent fitting to irregularities in
data.

® Here the regularizer tries to rely on your friend’s estimate to
combat irregularities.

e A larger A > 0 means you have more trust for your friend's
estimate.
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Learning a Gaussian distribution

| pick a Gaussian N(u,c?) and
give you a bunch of data D =
{x1,...,%n} independently drawn
from it. Can you learn p and o.

The probability density function (PDF) of N(u,c?) is

Fx | o) = e 54
X ,0) = e 20 .
a oV 2w
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Maximum likelihood estimation

n i — 11)2
Inf(D | u,0)=1In <a\}%> exp (—Z('zaz'u)>
= —nln(gx/ﬂ)—z(xiz_a’u)z.

2

1

Set derivative w.r.t. u to 0,

ZXiiHZO = Mm/Z%ZXi

—~ g2
1

Set derivative w.r.t. o to 0,
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Regularization

If your friend told you that he has played the game with me and he
knows ¢ and his estimate of p is ¢, and you want to make use of this
prior knowledge...

regularizer

1 1
fo=argmax | Inf(D | pu) — Tﬂ(u—c)2 = (c—i—Zx,-).
i

n n+1

® The regularized estimate i has a smaller variance than pi,.

® However, fi has a larger bias (expected difference between the
estimate and the true mean) than fi .
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Summing Up...

Learning is...

Collect some training data, e.g. coin flips.

Choose a hypothesis class, e.g. Bernouli distribution.

Choose a loss function, e.g. negative log-likelihood.
® Choose an optimization procedure, e.g. set derivative to 0.

Remarks

® Just like human learning, we want to learn something generally
applicable beyond what we have seen.

m i.e., the model should work well not only on the training data, but
on new test data too

® Regularization may be used to encode prior knowledge.

Statistics, optimization and regularization provide powerful tools for
formulating and solving machine learning problems.
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Regression

Ordinary least squares
Ridge regression

Basis function method
Nearest neighbor regression

Kernel regression
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Ordinary Least Squares

20 -10 10 20 30 40 50 60

Find a best fitting hyperplane for (x1,y1), ..., (Xn, yn) € RY x R.
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e OLS finds a hyperplane minimizing the sum of squared errors (SSE)

ﬁn—a@mm§j 18— i)

BERd

® The solution to OLS is
Bn=(XTX)" !XTy,

where X is the n X d matrix with x; as the /-th row, and
Yy =01y

The formula holds when X7 X is non-singular (also see slide 20). When XX is
singular, there are infinitely many possible values for 3,. They can be obtained by
solving the linear systems (X'"X)3 = XTy.
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Proof. The sum of squared error can be written as
Ra(B) =D _(x/ B—yi)? = IIXB — 3.
i=1
Set the gradient of R, to 0
VR,=2X"(X3-y)=0,

we have

Bn=(XTX)"1XTy.
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Least Squares as MLE

* Consider the class of conditional distributions {ps(Y|X) : 8 € R?},
where
Y —x"B)?/202

ps(Y | X =x) = N(Y;x"3,0%) = e ( ,

\2mo

with o being a constant.
® The (conditional) likelihood of f is

Ln(/B) = Pﬁ(h ’ X1) s PB()/n ‘ Xn)-

® Maximizing the likelihood L,(3) gives the same (3, as given by the
method of least squares.

19 /34



Ridge Regression

® When collinearity is present, the matrix X X may be singular or
close to singular, making the solution unreliable.

® \We see a valley if we plot the SSE, or a “ridge” in the
log-likelihood (recall the MLE interpretation for least squares)
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* Ridge regression fixes the “ridge” by adding a regularizer \||3||3 to

OLS objective, where A > 0 is a fixed constant.

quadratic/¢ regularizer

n ——
Bo = argmin(3_(x/ 8-y + N8I3

BeRd N

® |f we plot the regularized SSE, we see a unique minimizer
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® By setting the gradient of the objective function to 0, we obtain
Bn = (M +XTX)"1XTy.

The matrix A/ + XX is non-singular, and thus there is always a
unique solution.

® When A is large, the model fits less well on training data, thus the
regularizer helps in preventing the model from fitting to
irregularities in the training data.
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Regression with a Bias

® So far we have only considered hyperplanes of the form y = x' 3,
which passes through the origin (green line).
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e Usually, hyperplanes with a bias term (red line), that is,
hyperplanes of the form y = x' 3 + b is more appropriate.

® The bias may need to be treated differently from the linear

coefficients.
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OLS with a bias term

® For OLS, we can simply choose the best fitting hyperplane with a
bias term

n bias

SN
(bn, Bn) = argmin Z(x7ﬂ+ b _y/')2-
beR,BERY 7

® We can reduce it to regression without a bias term by adding a

dummy feature: simply replace x" 3 4 b with (1 x") (Z)

24 /34



Ridge regression with a bias term

® For ridge regression, we again have a regularizer for the linear
coefficients, but we do not regularize the bias term.

(b Ba) = argmin (3 7(x 8+ b — )2+ AlI5IB)-
beR,BeR? N,

® Again, we can solve it by reducing it to ridge regression without a

bias term.
m Let &, =x; — X, and §, = y; — y, where x = >, x;/n, and
y= 27:1 yi/n.

m Then we can show that

n

Bn = argmin(Z(’A(,TB -9+ /\||5||§),

BeR? Moy

bn - }_/ - _Tﬁm
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Basis Function Method

We can use linear regression to learn nonlinear functions
® Choose some basis functions gi,...,gx : R — R.
® Transform each input x to (g1(x), ..., gk(x)).
® Perform linear regression on the transformed data.

Examples
e Linear regression: use basis functions gi, ..., g4 with gi(x) = x;,
and go(x) = 1.

® Quadratic functions: use basis functions of the above form,
together with basis functions of the form gjj(x) = x;x; for all
1<i<j<d
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k nearest neighbor (kKNN)

Given a test example x, kNN predicts
hn(x) = avg{y; : x;j € Nk(x)},

that is, the average of the values of the set Ni(x) of the k nearest
neighbors of x in the training data.

¢ (Curse of dimensionality) The number of samples required for
accurate approximation is exponential in the dimension.

® kNN is a non-parametric method, while linear regression is a
parametric method.
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® |n the figure above, we fit 1-NN regressor given five training points.

® The learned function is a piecewise-linear function passing through
all the training points.
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Your turn

® Given three training examples with (x, y) being (1, 1), (2,2), (4,4),
draw the function learned by 1NN.

® How does the function change if an additional training example
(5,5) is provided?

® How does the function change if an additional training example
(3,3) is provided?
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Kernel Regression

Given a test example x, kernel regression predicts

ha(x) = S K(xxi)yi | D K(x,x0),
i=1 i=1

where K(x,x’) is a function measuring the similarity between x and x/,
and is often called a kernel function.

Example kernel functions

! _y||2
® Gaussian kernel Ky (x,x') = %exp(—”xz)\xuz).

® kNN kernel Ki(x,x") = I([|x" — x|| < maxyrepn,(x) [[X" —x||). Note
that this kernel is data-dependent and non-symmetric.
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Parametric vs. Nonparametric
Methods

® Parametric methods use models with fixed number of parameters
m e.g. OLS, ridge regression

® Nonparametric methods use data-dependent models with a
increasing number of parameters as more data becomes available.

m e.g. kNN, kernel regression

® Nonparametric methods can possibly represent more complex
functions, but they often requires a lot of data and computation.
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Your turn
Which of the following statement is correct? (Multiple choice)
(a) In ridge regression, we should penalize a large bias term.
(b) Ridge regression always has a unique solution.
(c) A non-parametric regression method has no parameters.

(d) In machine learning, model learning is often formulated as an
optimization problem.
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What You Need to Know...

Types of learning problems
The machine learning approach

Parametric regression: OLS, ridge regression, basis function
method.

Non-parametric regression: kNN, kernel regression.
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