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MNIST

http://yann.lecun.com/exdb/mnist/
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ImageNet

http://www.image-net.org/
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Classification

∙ Classification involves determining the category of an input.

∙ A supervised classification method learns a classifier using a set of
labelled examples.

( , 5) ... ( , 4)

( , 1) ... ( , 2)
classifier

∙ We are often interested in the accuracy of a classifier, but there are
a few other commonly used performance measures (e.g. precision,
recall, F-measure).
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Decision boundary

∙ When the inputs are numerical vectors in Rd , it is convenient to
think of a classifier as the boundary dividing the classes.

∙ When d ≤ 3, we can visualize the classifier by explicitly drawing
the decision boundary.

∙ When d > 3, we cannot plot the decision boundary, but people
often embed the data in a 2/3 dimensional space, and visualize the
decision boundary there.
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Your turn

Consider the following classifier for 2D points

f (x1, x2) =

⎧⎪⎨⎪⎩
red, if x1 > 5,

green, if x1 ≤ 5 and x2 > 1,

blue, if x1 ≤ 5 and x2 ≤ 1.

Draw the decision boundary for the classifier, and label each region
with its class.
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Classification Algorithms
∙ Nearest neighbor classifier

∙ Naive Bayes classifier

∙ Logistic regression

∙ Support vector machines
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Remark on notations

∙ As in the case of regression, we use (x1, y1), . . . , (xn, yn) to denote
the training set.

∙ A bold font x denotes a vector of d attributes, which may or may
not be numerical.

∙ We often write x as (x1, . . . , xd), and xi as (xi1, . . . , xid).
That is, the i-th component of x is written as xi , and the j-th
component of xi is written as xij .
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Nearest Neighbor Classifier

∙ As in the case of regression, we can also use the nearest neighbors
to help us to determine the class of an input.

∙ For a given input x, we predict the majority label of its k nearest
neighbors in the training set, that is, a kNN classifier is given by

hn(x) = majority{yi : xi ∈ Nk(x)},

where Nk(x) consists of the k nearest examples of x (wrt some
distance measure).
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Distance measures

∙ Various distance measures are used in practice.

∙ The Minkowski distance is given by

dp(x, x
′) = ‖x− x′‖p =

(︃∑︁
i

|xi − x ′i |p
)︃1/p

,

with d1 being the Manhattan distance, and d2 being the Euclidean
distance.

∙ Caveat: kNN does not work well if the features are on different
scales.
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Case study: 1NN for MNIST

∙ Each image can be viewed as a feature vector of length 784, with
each feature having integer values from 0 to 255.

∙ The input images are six images from the test set.

∙ The nearest neighbors are actually very similar to the input images,
but there are small differences.
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Advantage

∙ Under mild conditions, as k → ∞ and n/k → ∞, the kNN
classifier will give you the best possible classification performance
on average.

Limitations

∙ (Curse of dimensionality) The number of samples required for
accurate approximation is exponential in the dimension.

∙ Finding the nearest neighbors is computationally expensive.
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1-NN classifier 10-NN classifier Bayes optimal classifier
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Naive Bayes Classifier (NB)

∙ Consider an input space 𝒳 = 𝒳1 × . . .×𝒳d , where each 𝒳i is a
finite set.

∙ NB attempts to model the joint distribution of the input X and the
output Y assuming that the features are conditionally independent
of each other given the output.

∙ Specifically, NB assumes a joint distribution p(X ,Y ) satisfying

p(x1, . . . , xd | y) = p(x1 | y) . . . p(xd | y).

∙ Usually, this does not hold, but it can be a good approximation for
classification purpose.
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Learning (MLE)

∙ We train a NB model by maximizing the likelihood

argmax
p

∏︁
i

p(xi , yi ).

∙ The maximum likelihood model is given by

p̂(y) = ny/n,

p̂(xj | y) = ny ,xj/ny ,

where ny is the number of times class y appears in the training set,
and ny ,xj is the number of times attribute 1 ≤ j ≤ d takes value
xj ∈ 𝒳j when the class label is y .
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Prediction

∙ Given an NB model p, an example x = (x1, . . . , xd) is classified as

y = arg max
y ′∈𝒴

p(y ′ | x).

∙ This is equivalent to

y = arg max
y ′∈𝒴

p(y ′, x) = arg max
y ′∈𝒴

p(y ′)p(x1 | y ′)...p(xd | y ′),

by the independence assumption.
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Limitations

∙ Independence assumption unlikely to be satisified.

∙ The counts ny may be 0, making the estimates undefined.

∙ The counts may be very small, leading to unstable estimates.
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Laplace correction

∙ To deal with small counts, we add pseudo-counts to them

p̂(y) = (ny + c0)/
∑︁
y∈𝒴

(ny ′ + c0),

p̂(xj | y) = (ny ,xj + c1)/
∑︁
x ′j ∈𝒳j

(ny ,x ′j + c1),

where c0 > 0 and c1 > 0 are user-chosen constants.

∙ Laplace correction makes NB more stable, but still relies on strong
independence assumption.
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Extension to real-valued features

∙ We can assume that p(xj | y) is a Gaussian distribution.

∙ It suffices to compute the mean and variance from data.
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Logistic Regression (LR)

Model

∙ 𝒳 = Rd .

∙ Logistic regression estimates conditional distributions of the form

p(y | x, 𝜃) = exp(x⊤𝜃y )
⧸︁∑︁

y ′∈𝒴
exp(x⊤𝜃y ′),

where 𝜃y = (𝜃y1, . . . , 𝜃yd) ∈ Rd , and 𝜃 is the concatenation of 𝜃y ’s.

Prediction

An example x is classified as

y = arg max
y ′∈𝒴

p(y ′ | x, 𝜃).
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Learning

∙ Training is often done by maximizing regularized log-likelihood

L(𝜃) = log
n∏︁

i=1

p(yi | xi , 𝜃)− 𝜆||𝜃||22.

That is, the parameter estimate is

𝜃n = argmax
𝜃

L(𝜃).

∙ L(𝜃) is a concave function, and can be optimized using standard
numerical methods (such as L-BFGS).
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Support Vector Machines (SVMs,

optional)
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(xi , yi )

wTx+ w0 = 0

yi (w
T xi+w0)
||w||2

Geometric intuition

∙ If the data is separable (that is, the two classes lie on the two sides
of some hyperplane), then usually there are many separating
hyperplanes.

∙ The intuition of SVM is to find a separating hyperplane with
maximal margin (i.e., the minimum distance from the points to it).
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Algebraic formulation

∙ Finding out the maximum margin hyperplane can be directly
translated to the following optimization problem

max
M,w,w0

M

s.t.
yi (w

⊤xi + w0)

||w||2
≥ M, i = 1, . . . , n.

∙ This can be shown to be equivalent to

min
w,w0

1

2
||w||22

s.t. yi (w
⊤xi + w0) ≥ 1, i = 1, . . . , n.
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Soft-margin SVMs

∙ In general, we need to deal with non-separable data (that is, the
two classes do not lie on the two sides of any hyperplane).

∙ The SVM formulation that we have seen is called hard-margin
SVM.

∙ We can adapt hard-margin SVM to the non-separable case, by
penalizing examples which do not lie on the side that they belong
to.
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Algebraic formulation

The soft-margin SVM for non-separable data can be formulated as

min
w,w0,𝜉1,...,𝜉n

1

2
||w||22 + C

∑︁
i

𝜉i

subject to yi (w
⊤xi + w0) ≥ 1− 𝜉i , i = 1, . . . , n,

𝜉i ≥ 0, i = 1, . . . , n.

where

C > 0 is a user chosen constant.
Introducing 𝜉i allows (xi , yi ) to be misclassified with a penalty of
C𝜉i in the original objective function 1

2 ||w||22.
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SVM as minimizing regularized hinge loss

Soft-margin SVMs can be equivalently written as

min
w,w0

1

2C
||w||22 +

∑︁
i

max(0, 1− yi (w
⊤xi + w0)),

where max(0, 1− y(w⊤x+ w0)) is the hinge loss

Lhinge((x, y), h) = max(0, 1− yh(x))

of the classifier h(x) = w⊤x+ w0, and upper bounds the 0/1 loss

L0/1((x, y), h) = I (y ̸= sgn(h(x)))
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Your Turn

Which of the following statement is correct? (Multiple choice)

(a) kNN, naive Bayes, and logistic regression can all be viewed as
probabilistic classifiers.

(b) The scale of features has no influence on kNN’s performance.

(c) Naive Bayes can only be applied to problems with categorical
features.

(d) A logistic regression can be trained by maximizing the
log-likelihood.
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What You Need to Know...

∙ Decision boundary

∙ Probabilistic classifiers: NN, NB and LR.

∙ SVMs (optional)
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