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Recall

Supervised Learning

∙ Fit a model relating x and y given a dataset (x1, y1), . . . , (xn, yn)

∙ In a classification problem, the output is discrete.

( , 5) ... ( , 4)

( , 1) ... ( , 2)
classifier

∙ In a regression problem, the output is real-valued.

Terminology

∙ x: input, independent variables, covariate vector, observation, predictors,
explanatory variables, features.

∙ y: output, dependent variable, response.
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Unsupervised Learning

∙ Only the inputs are given, but not the outputs
∙ Unsupervised learning methods are used for various purposes, e.g.

Clustering: divide data points into groups

...
......

Density estimation: estimate a distribution given a sample
Dimension reduction: find a low-dimensional representation of data
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Directions of Dominant Variations

(a) Original (b) Projection

∙ Difference between data points may be coming mainly from a few
directions.

∙ In the example above, the data points mainly fluctuate along the
red line, and we can consider their projections to the red line as a
good approximation.

∙ This can help us filter out noise.
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(a) Original (b) Projection

∙ In the example above, the data points are grouped into two distinct
clusters, but overall, they show maximum variation along the red
line.

∙ Projecting the data points on the red line is lossy, but still
preserves the cluster information.
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∙ In the above two examples, we only consider a single direction of
maximum variation.

∙ In general, we can find additional directions of maximum variation
in an incremental way, by choosing a new direction that is
orthogonal to existing directions and maximizes the variance of the
projections.
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Principal Components Analysis (PCA)

∙ PCA takes in multi-dimensional data and finds orthogonal
directions in which the data has the largest variance.

∙ These directions, called the principal components, form a
lower-dimensional subspace.

∙ We can represent the original data points by their projections onto
the principal directions.

∙ We lose all information about where the datapoint is located in the
remaining orthogonal directions.
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Principal components as eigvenvectors

∙ Given x1, . . . , xn ∈ Rd , if v is a unit vector such that the variance
of their projections on v is maximised, then v satisfies

Σv = 𝜆v,

where Σ = 1
n

∑︀n
i=1(xi − x)(xi − x)⊤ is the empirical covariance

matrix.

∙ In addition, 𝜆 is the variance of the projections.
∙ In general, the top k eigenvectors of Σ are known as the top k

principal components.

top k = have largest k eigenvalues
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Why?

∙ The variance of the projections on v is given by

1

n

∑︀n
i=1[v

⊤(xi − x)]2 = v⊤Σv. (verify)

∙ Thus we want to maximize v⊤Σv subject to ||v||22 = 1.

∙ The Lagrangian and its gradient with respect to v are

L(v, 𝜆) = v⊤Σv − 𝜆(||v||22 − 1),

∇vL = 2Σv − 2𝜆v. (verify)

From the 2nd equation, we have Σv = 𝜆v. In addition, this implies
that the variance along v is v⊤Σv = v⊤(𝜆v) = 𝜆.
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Properties

∙ The principal components are orthogonal.
∙ The projections of the data on two different principal components
are linearly uncorrelated.

this does not imply that the projections are uncorrelated — one may
be the nonlinear function of another!
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Dimension reduction using PCA

∙ Input: x1, . . . , xn ∈ Rd , dimension k .

∙ Output: k-dimensional representation zi of xi , for each i .
∙ Procedure

v1, . . . , vk ← top k principal components
zi ← ((xi − x̄)⊤v1, . . . , (xi − x̄)⊤vk), for each i .
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Reconstruction

∙ Input: principal components v1, . . . , vk , reduced data
representations z1, . . . , zn.

∙ Output: x̃i ≈ xi for each i .

∙ Procedure: x̃i ← x̄+
∑︀k

j=1 zijvj , for each i .
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PCA vs SVD (optional)

∙ Principal components are often found by performing SVD on the centered
design matrix.

∙ Specifically, the empirical covariance matrix Σ can be written as

Σ =
1

n
X̄⊤X̄,

where X̄ ∈ Rn×d is the centered design matrix, that is, the i-th row of X̄ is
xi − x̄.

∙ Given the SVD X̄ = UΛV⊤, where U ∈ Rn×n and V ∈ Rd×d are orthogonal
matrices, and Λ ∈ Rn×d is a diagonal matrix, we have

Σ =
1

n
VΛ⊤U⊤UΛV⊤ = VDV⊤ ⇒ ΣV = VD,

where D = 1
n
Σ⊤Σ ∈ Rd×d is a diagonal matrix with the diagonal entries being

1/n of the squares of the singular values.

∙ Hence the columns of V are exactly the eigenvectors of Σ (the principal
components), and the diagonal entries of D are the corresponding eigenvalues
(variances of projections).
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Your turn

Given three feature vectors (1, 2), (2, 3) and (5, 6).

Draw the scatter plot for them, and show the directions of the two
principal components.
If we only use the top principal component for reconstruction, can
we perfectly reconstruct the original data?
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Image Compression

∙ Consider an image of size h × w .

∙ We can view the rows of the image as the data points, and
compute their top k principal components.

∙ Now we represent each row using its coordinates in the subspace
with the k principal components as the basis.

∙ While the original image has size h × w , the compressed
representation has size (k + 1)w + kh.
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(a) Original (b) k = 10 (c) k = 50 (d) k = 100

∙ The original image has size 512x512x3 (think of this as 512x1536).

∙ With k = 50, we can reduce the image size by a factor or
512x1536/(51x1536 + 50x512)=7.5665 (i.e., a compression ratio
of 7.5665).
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Eigenface

∙ Consider a database of face images.

∙ We can view each image as a vector, and find the top principal
components for them.

∙ With these principal components, we can reduce the dimension of
the images, and also reconstruct them from the lower dimensional
representation.

∙ Each principal component can be viewed as an image. These are
called the eigenfaces.
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(a) Original images

(b) PCA reconstruction (32 components)

The reconstruction is lossy (the two reconstructed images in red boxes
are hardly distinguishable).
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∙ Top eigenfaces are blurry and have no distinct features.
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(a) Original images

(b) PCA reconstruction (72 components)

With more components, PCA starts to pick up very fine features
(compare the two images in red boxes again).
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PCA + Supervised Learning

∙ For supervised learning, we can first apply PCA to reduce the
dimension of the data, and then perform supervised learning on the
lower dimensional data.

e.g. train a classifier for face recognition using the lower dimensional
representation

∙ This can be used as a way to filter out irregularities in the dataset,
thus helps in preventing the learning algorithm to fit to
irregularities.

∙ We can thus view PCA as an implicit regularization technique.
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Visualizing Classifiers

∙ The plots show how some classes in the MNIST training data look
like when projected to the subspace spanned by the top 2
eigenvectors.

∙ While we lose quite a bit of information, the embedding still gives
us some idea of how well the classes are separated.

∙ We can use such plots to visualize any classifier as well.
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More on Dimension Reduction

∙ Two types of methods
Feature selection: find a subset of most important variables.

▶ Lasso, LARS, forward/backward selection,...

Feature extraction (or feature projection): embed/project the data
to a lower dimensional space.

▶ PCA, kernel PCA, Isomap, multidimensional scaling, t-SNE, LDA,
autoencoder, ...

∙ We will cover autoencoder in this course (also useful for image
compression).
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What You Need to Know...

∙ Principal components

Intuition: directions along which the data varies most
Eigenvectors of the empirical covariance matrix

∙ Reduced representation and reconstruction
∙ Applications

Image compression, eigenface
PCA + supervised learning
Visualizing classifiers
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