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Recall

1-NN classifier 10-NN classifier Bayes optimal classifier

For kNN, we need to choose the right k so that it works well.
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(a) Training data (b) Test data
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Training and test set error of kNN classifier
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kNN regression

Mean squared error for kNN regression on the diabetes dataset
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https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html
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https://www.youtube.com/watch?v=DQWI1kvmwRg


Model Selection

∙ Model selection is concerned with estimating the performance of
different models in order to choose the best one.

∙ We would hope that we can pick a model that can help us to drive
the predictive error to zero.

∙ This is generally not possible.

A simple model will not pick up the regularities in data.
A complex model may pick up too much irregularities in data.

∙ This can be described more precisely by the bias-variance tradeoff.
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Bias-Variance Tradeoff

∙ The bias and variance are two components of the predictive error.
∙ In the case of regression, consider how a learning algorithm
performs on an input x.

The output Y follows the conditional distribution P(Y | x).
The predicted value Y ′ can be considered a random function of the
training set.
We are interested in the expected prediction error E((Y ′ − Y )2),
where expectation is taken wrt to both Y and the random training
set (which Y ′ depends on).
The expected prediction error is a property of the model class.
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Bias-variance decomposition

expected prediction error⏞  ⏟  
E
(︀
(Y ′ − Y )2

)︀
=

variance⏞  ⏟  
E
(︀
(Y ′ − E(Y ′))2

)︀
+

bias (squared)⏞  ⏟  (︀
E(Y ′)− E(Y )

)︀2
+

irreducible noise⏞  ⏟  
E
(︀
(Y − E(Y ))2

)︀
,

Proof. Expand the RHS and simplify.

Bias-variance tradeoff

In general, as model complexity increases (i.e., the hypothesis
becomes more complex), variance tends to increase, and bias tends
to decrease.
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Bias-variance Tradeoff in kNN (optional)

Assumption

∙ Suppose Y | X ∼ N(f (X ), 𝜎2) for some function f and some fixed
𝜎. Put it in another way,

Y = f (X ) + 𝜖,

where 𝜖 ∼ N(0, 𝜎2).

∙ In addition, we consider the simpler case where x1, . . . , xn are fixed.
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Complexity measure for kNN

∙ We can consider 1
k as a complexity measure for the kNN model.

∙ When 1
k is small, a kNN model is closer to a constant (the average

of all outputs), and thus the model is simpler.

∙ On the other hand, when 1
k is large, a kNN model is likely to be

very complex function, and thus the model is more complex.
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Bias and variance

∙ Let Y be the true value at x, then EY = f (x).

∙ kNN predicts the value Y ′ = 1
k

∑︀
xi∈Nk (x)

yi for x.

∙ With some calculation, we have

bias = E(Y ′)− E(Y ) =
1

k

∑︁
xi∈Nk (x)

f (xi )− f (x),

variance = E((Y ′ − E(Y ′))2) = 𝜎2/k .
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Bias-variance trade-off

As 1
k increases (or as model complexity increases), bias is likely to

decrease, and variance increases.
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Model Selection Techniques

∙ We often need to consider the following problems

(a) Given several different classes of models (e.g. logistic regression,
SVMs), how do we choose the best class?

(b) Given a model with some tunable hyperparameters (e.g. the
regularization constant in ridge regression), how do we choose the
best hyperparameters?
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∙ In the next few slides, we will think of (b) as a special case of (a)
by taking each hyperparameter configuration as defining a class of
models.

∙ We can phrase our problem as follows: given m classes of models
ℳ1, . . . ,ℳm, how do we choose the best model?

here each ℳi is a set of concrete models, such as functions, or
probability distributions

16 / 21



Using a validation set

∙ Split the data into a training set 𝒯 , a validation set 𝒟.

∙ For each ℳi , train a model on 𝒯 , and test it on 𝒟.

∙ Choose the model with best validation set performance.

Remarks

∙ A lot of data is needed, while the amount may be limited.

∙ The validation set performance is not a good indicator of a model’s
ability to generalise (make good predictions on new inputs).

∙ The generalization performance of a model need to be assessed on
a separate test set.
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K -fold cross validation

∙ Split the training data into K folds.

∙ For each ℳi , train K models, with each trained on K − 1 folds
and tested on the remaining fold.

∙ Choose the parameter with best average performance.

Computationally more expensive than using a development set.
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Variants of cross validation

∙ Leave-one-out cross validation is n-fold cross validation (that is,
each fold has exactly one example).

∙ For data that can be divided into several groups, stratified cross
validation aims to ensure the folds have similar group proportions.

∙ In practice, 10-fold stratefied cross validation is recommended,
provided that computation time is not an issue, and the dataset is
reasonably large.
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More on Model Selection

∙ Two common approaches
Analytically approximate the validation step

▶ AIC, BIC, MDL

Efficient sample re-use
▶ Cross validation, bootstrap
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What You Need to Know...

∙ Goodness of fit ̸= predictive performance, overfitting

∙ Bias-variance tradeoff

∙ Two methods: development set and cross-validation.
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