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Recall

1-NN classifier 10-NN classifier Bayes optimal classifier

For kNN, we need to choose the right k so that it works well.

2/21



-4

(a) Training data
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(b) Test data



Training and test set error of kNN classifier
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kNN regression
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squared error for kNN regression on the diabetes dataset
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https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html

Machine Learning A Cappella - Overfitting Thriller!

Udacity

U 31516
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https://www.youtube.com/watch?v=DQWI1kvmwRg

Model Selection

Model selection is concerned with estimating the performance of
different models in order to choose the best one.

We would hope that we can pick a model that can help us to drive
the predictive error to zero.

This is generally not possible.

m A simple model will not pick up the regularities in data.
m A complex model may pick up too much irregularities in data.

This can be described more precisely by the bias-variance tradeoff.
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Bias-Variance Tradeoff

® The bias and variance are two components of the predictive error.

® In the case of regression, consider how a learning algorithm
performs on an input x.

m The output Y follows the conditional distribution P(Y | x).

m The predicted value Y’ can be considered a random function of the
training set.

m We are interested in the expected prediction error E((Y’ — Y)?),
where expectation is taken wrt to both Y and the random training
set (which Y’ depends on).

m The expected prediction error is a property of the model class.
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Bias-variance decomposition
expected prediction error variance bias (squared) irreducible noise

E((Y' = Y)) =E((Y' —E(Y))’) + (E(Y) —E(Y)* + E((Y - E(Y))),

Proof. Expand the RHS and simplify.
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Bias-variance decomposition
expected prediction error variance bias (squared) irreducible noise

E((Y' = Y)) =E((Y' —E(Y))’) + (E(Y) —E(Y)* + E((Y - E(Y))),

Proof. Expand the RHS and simplify.

Bias-variance tradeoff

In general, as model complexity increases (i.e., the hypothesis
becomes more complex), variance tends to increase, and bias tends
to decrease.
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Prediction Error
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Bias-variance Tradeoff in kNN (optional)

Assumption

® Suppose Y | X ~ N(f(X),0?) for some function f and some fixed
o. Put it in another way,

Y = f(X) +e

where € ~ N(0, 02).

® |n addition, we consider the simpler case where x1, ..., X, are fixed.
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Complexity measure for kNN

® e can consider % as a complexity measure for the kNN model.

® When % is small, a kNN model is closer to a constant (the average

of all outputs), and thus the model is simpler.

® On the other hand, when % is large, a kNN model is likely to be

very complex function, and thus the model is more complex.

12/21



Bias and variance
® Let Y be the true value at x, then EY = f(x).
e kNN predicts the value Y/ = %ZX;ENk(x) y; for x.

e With some calculation, we have

bias = E(Y') —E(Y) = % > fxi) - f(x),
x;€ N (x)

variance = E((Y' — E(Y"))?) = o?/k.
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Bias-variance trade-off

As % increases (or as model complexity increases), bias is likely to
decrease, and variance increases.
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Model Selection Techniques

® \We often need to consider the following problems
(a) Given several different classes of models (e.g. logistic regression,
SVMs), how do we choose the best class?
(b) Given a model with some tunable hyperparameters (e.g. the
regularization constant in ridge regression), how do we choose the
best hyperparameters?
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® In the next few slides, we will think of (b) as a special case of (a)
by taking each hyperparameter configuration as defining a class of
models.

® We can phrase our problem as follows: given m classes of models
My, ..., Mp, how do we choose the best model?

here each M; is a set of concrete models, such as functions, or
probability distributions
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Using a validation set

e Split the data into a training set T, a validation set D.
® For each M;, train a model on 7, and test it on D.

® Choose the model with best validation set performance.
Remarks

® A lot of data is needed, while the amount may be limited.

® The validation set performance is not a good indicator of a model's
ability to generalise (make good predictions on new inputs).

® The generalization performance of a model need to be assessed on
a separate test set.
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K-fold cross validation

e Split the training data into K folds.

® For each M;, train K models, with each trained on K — 1 folds
and tested on the remaining fold.

® Choose the parameter with best average performance.

Computationally more expensive than using a development set.
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Variants of cross validation
® |eave-one-out cross validation is n-fold cross validation (that is,
each fold has exactly one example).

® For data that can be divided into several groups, stratified cross
validation aims to ensure the folds have similar group proportions.

® |n practice, 10-fold stratefied cross validation is recommended,
provided that computation time is not an issue, and the dataset is
reasonably large.
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More on Model Selection

® Two common approaches
m Analytically approximate the validation step
> AIC, BIC, MDL
m Efficient sample re-use
» Cross validation, bootstrap
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What You Need to Know...

® Goodness of fit # predictive performance, overfitting
® Bias-variance tradeoff

® Two methods: development set and cross-validation.
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