Model Selection

Nan Ye

School of Mathematics and Physics The University of Queensland

Recall

1-NN classifier

10-NN classifier

Bayes optimal classifier

For kNN, we need to choose the right k so that it works well.

Training and test set error of kNN classifier

kNN regression

Mean squared error for kNN regression on the diabetes dataset

Model Selection

- Model selection is concerned with estimating the performance of different models in order to choose the best one.
- We would hope that we can pick a model that can help us to drive the predictive error to zero.
- This is generally not possible.
 - A simple model will not pick up the regularities in data.
 - A complex model may pick up too much irregularities in data.
- This can be described more precisely by the bias-variance tradeoff.

Bias-Variance Tradeoff

- The bias and variance are two components of the predictive error.
- In the case of regression, consider how a learning algorithm performs on an input **x**.
 - The output Y follows the conditional distribution $P(Y | \mathbf{x})$.
 - The predicted value Y' can be considered a random function of the training set.
 - We are interested in the expected prediction error $\mathbb{E}((Y' Y)^2)$, where expectation is taken wrt to both Y and the random training set (which Y' depends on).
 - The expected prediction error is a property of the model class.

Bias-variance decomposition

Proof. Expand the RHS and simplify.

Bias-variance decomposition

 $\underbrace{\mathbb{E}((Y'-Y)^2)}_{\mathbb{E}((Y'-Y)^2)} = \underbrace{\mathbb{E}((Y'-\mathbb{E}(Y'))^2)}_{\mathbb{E}(Y'-\mathbb{E}(Y'))^2} + \underbrace{\mathbb{E}((Y'-\mathbb{E}(Y))^2)}_{\mathbb{E}(Y'-\mathbb{E}(Y))^2} + \underbrace{\mathbb{E}((Y-\mathbb{E}(Y))^2)}_{\mathbb{E}(Y'-\mathbb{E}(Y))^2},$

Proof. Expand the RHS and simplify.

Bias-variance tradeoff

In general, as model complexity increases (i.e., the hypothesis becomes more complex), variance tends to increase, and bias tends to decrease.

Bias-variance Tradeoff in *k*NN (optional)

Assumption

• Suppose $Y \mid X \sim N(f(X), \sigma^2)$ for some function f and some fixed σ . Put it in another way,

$$Y = f(X) + \epsilon,$$

where $\epsilon \sim N(0, \sigma^2)$.

• In addition, we consider the simpler case where $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are fixed.

Complexity measure for kNN

- We can consider $\frac{1}{k}$ as a complexity measure for the kNN model.
- When $\frac{1}{k}$ is small, a *k*NN model is closer to a constant (the average of all outputs), and thus the model is simpler.
- On the other hand, when $\frac{1}{k}$ is large, a kNN model is likely to be very complex function, and thus the model is more complex.

Bias and variance

- Let Y be the true value at x, then $\mathbb{E} Y = f(x)$.
- kNN predicts the value $Y' = \frac{1}{k} \sum_{\mathbf{x}_i \in N_k(\mathbf{x})} y_i$ for \mathbf{x} .
- With some calculation, we have

$$bias = \mathbb{E}(Y') - \mathbb{E}(Y) = rac{1}{k} \sum_{\mathbf{x}_i \in N_k(\mathbf{x})} f(\mathbf{x}_i) - f(\mathbf{x}),$$

 $variance = \mathbb{E}((Y' - \mathbb{E}(Y'))^2) = \sigma^2/k.$

Bias-variance trade-off

As $\frac{1}{k}$ increases (or as model complexity increases), bias is likely to decrease, and variance increases.

Model Selection Techniques

- · We often need to consider the following problems
 - (a) Given several different classes of models (e.g. logistic regression, SVMs), how do we choose the best class?
 - (b) Given a model with some tunable hyperparameters (e.g. the regularization constant in ridge regression), how do we choose the best hyperparameters?

- In the next few slides, we will think of (b) as a special case of (a) by taking each hyperparameter configuration as defining a class of models.
- We can phrase our problem as follows: given *m* classes of models *M*₁,..., *M_m*, how do we choose the best model?
 here each *M_i* is a set of *concrete* models, such as functions, or

probability distributions

Using a validation set

- Split the data into a training set \mathcal{T} , a validation set \mathcal{D} .
- For each \mathcal{M}_i , train a model on \mathcal{T} , and test it on \mathcal{D} .
- Choose the model with best validation set performance.

Remarks

- A lot of data is needed, while the amount may be limited.
- The validation set performance is not a good indicator of a model's ability to generalise (make good predictions on new inputs).
- The generalization performance of a model need to be assessed on a *separate* test set.

K-fold cross validation

- Split the training data into K folds.
- For each M_i , train K models, with each trained on K-1 folds and tested on the remaining fold.
- Choose the parameter with best average performance.

Computationally more expensive than using a development set.

Variants of cross validation

- Leave-one-out cross validation is *n*-fold cross validation (that is, each fold has exactly one example).
- For data that can be divided into several groups, stratified cross validation aims to ensure the folds have similar group proportions.
- In practice, 10-fold stratefied cross validation is recommended, provided that computation time is not an issue, and the dataset is reasonably large.

More on Model Selection

- Two common approaches
 - Analytically approximate the validation step
 - AIC, BIC, MDL
 - Efficient sample re-use
 - Cross validation, bootstrap

What You Need to Know...

- Goodness of fit \neq predictive performance, overfitting
- Bias-variance tradeoff
- Two methods: development set and cross-validation.