
Adaline

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 23



Non-linearly Separable Data

∙ The perceptron learns a separating hyperplane when the data is
linearly separable, but fails when the data is not linearly separable.

∙ Can we design an algorithm that works for non-linearly separable
data? The answer is most likely no in general.

∙ Specifically, it is NP-hard to minimize the classification error for
the perceptron, that is, given a training set {(x1, y1), . . . , (xn, yn)},
it is NP-hard to solve

min
w

1

n
I (sgn(x⊤i w) ̸= yi )

If you have not learned about computational complexity, NP-hardness
basically means there is no efficient algorithm to solve the problem.

2 / 23



Dealing with Intractability

∙ Idea 1: hand-code powerful features

hand-coding good features are often hard
the hand-coded features may not make the data linearly separable

∙ Idea 2: optimize a surrogate objective

instead of trying to minimize the classification error, we minimize
another objective function
this surrogate need to be computationally easy to minimize, and
well-correlated with classification error

3 / 23



Adaline

∙ Widrow and Hoff (1960) developed an algorithm that is similar to
the perceptron, but more stable than the perceptron when the data
is non-linearly separable.

∙ The algorithm is known by various names: Adaline (Adaptive
Linear), LMS (least mean square) rule,, Widrow-Hoff rule, or delta
rule.

∙ They also built a learning device, also named as Adaline, to
implement the Adaline learning rule.

4 / 23



The Adaline is a lunch box sized machine

5 / 23



Surrogate objective

∙ Consider a training set (x1, y1), . . . , (xn, yn) ∈ Rd+1 × {−1,+1}.
∙ While the perceptron aims to minimize the classification error

min
w

∑︁
i

I (yi ̸= sgn(w⊤xi )),

Adaline aims to minimize

min
w

∑︁
i

(w⊤xi − yi )
2

∙ For classification, Adaline outputs sgn(w⊤x), which is the same as
the perceptron.

6 / 23



linear unit
x0 = 1

x1

x2

...

xd

Σ

w1

w2

wd

w0

x⊤w min
w

∑︁
i

(w⊤xi − yi )
2

Adaline essentially replaces the linear threshold unit by a linear
unit, and minimizes the sum of squared error during learning.

7 / 23



Update rule

∙ Each time Adaline sees an example (x, y) it updates current w to

w′ = w +Δw = w + 𝜂(y −w⊤x)x.

∙ Usually the example is randomly chosen from the training set.
∙ This can be seen as a way to reduce the error on (x, y) as follows.

The first order approximation of the error f (w) = (w⊤x− y)2 is

f (w +Δw) ≈ f (w) +∇ f (w)⊤Δw

= f (w) + (−2(y −w⊤x)x)⊤(𝜂(y −w⊤x)x)

= f (w)− 2𝜂(y −w⊤x)2‖x‖22.

When Δw is small, updating w to w +Δw decreases the error.

∙ In fact, Δw = −𝜂∇ f (w), and Adaline is a special case of
stochastic gradient descent (more on this later in the course).

8 / 23



When to stop

∙ In practice, we can stop the algorithm after a fixed number of
iterations.

∙ Alternatively, we can monitor the losses on the chosen examples
over last few iterations, and stop when we don’t see much progress.

9 / 23



Convergence
∙ We need to choose a suitable value of the learning rate 𝜂.

If 𝜂 is too small, we cannot reduce the error by much.
If 𝜂 is too large, we are not guaranteed to reduce the error.

∙ With a suitable 𝜂, the algorithm will eventually find a w that
minimizes the sum of squared error, if we run the algorithm forever.

∙ If two input dimensions are highly correlated, the algorithm may
convergence very slowly.

10 / 23



Mini-batch and batch versions

∙ The mini-batch version of Adaline uses the average of the
correction computed over a small random subset S of examples,
that is

Δw =
1

|S |
∑︁

(x,y)∈S

𝜂(y −w⊤x)x.

∙ In the batch version, S is the whole training set, and this can be
computationally expensive for large datasets.

∙ Using a suitable mini-batch size can accelerate convergence, and at
the same time maintaining efficiency.

11 / 23



Classification performance guarantee

∙ While Adaline can be used to produce a classification rule for
linearly non-separable data, it may not find a separating hyperplane
even when there is one.

∙ In fact, it may give an error arbitrary close to 0.5 when there is a
separating hyperplane — in practice, this is usually not that bad.

12 / 23



Adaline vs. Perceptron

∙ Perceptron and Adaline minimize different error functions, but both
are error correction rules that tries to minimize the error on a
chosen example.

∙ Perceptron is guaranteed to find a separating hyperplane when
there is one, but Adaline may not.

∙ Perceptron never converges on non-linearly separable data, but
Adaline generally converges.

13 / 23



Logistic Approximation

∙ Besides using the quadratic loss as a surrogate loss for the 0/1
loss, there are other surrogate losses.

∙ The logistic approximation computes a conditional distribution
p(y = 1 | x,w) and aims to minimize the log-loss (equivalently,
maximize the log-likelihood) of the data.

14 / 23



∙ Consider a training set (x1, y1), . . . , (xn, yn) ∈ Rd+1 × {0, 1} (note
that we are using {0, 1} instead of {−1, 1} to encode the labels).

∙ We use a sigmoid unit as shown below, where 𝜎(u) = 1
1+e−u

squashes u ∈ (−∞,+∞) to be in the range [0, 1]
x0 = 1

x1

x2

...

xd

Σ

w1

w2

wd

w0

x⊤w 𝜎(x⊤w)

15 / 23



∙ 𝜎(w⊤x) = 1

1+e−w⊤x
= ew

⊤x

1+ew⊤x
is the probability that x is positive,

and thus 1

1+ew⊤x
is the probability that x is negative.

∙ We can write down the class distribution in a compact form as

p(y | x,w) =
eyw

⊤x

1 + ew⊤x
.

∙ The objective is to minimize the log-loss

min
w

∑︁
i

− ln
eyiw

⊤xi

1 + ew⊤xi

∙ This is just a binary logistic regression model.

16 / 23



Update rule

∙ Each time we see an example (x, y), we update current w to

w′ = w +Δw = w + 𝜂(y − 𝜎(w⊤x))x.

This has the same form as the perceptron, except that we have a
different scaling factor for x.

∙ Usually the example is randomly chosen from the training set.

17 / 23



Perceptron, Adaline, Logistic

Regression

∙ Each time we see a random example (x, y), we update current w to

(Perceptron) w′ = w + 𝜂(y − sgn(w⊤x))x,

(Adaline) w′ = w + 𝜂(y −w⊤x)x,

(Logistic) w′ = w + 𝜂(y − 𝜎(w⊤x))x.

∙ All three algorithms adjust current w by an amount of 𝜂cw, where
c is a correction factor specific to each algorithm.

18 / 23



Demo

A linearly separable dataset

import numpy as np

from scipy.special import expit

# generate a random dataset consisting of 200 examples

n = 200

d = 10

X = np.random.rand(n, d) - 0.5

beta = np.ones(d)

Y = np.sign(X @ beta)

∙ The true classifier is f (x;𝛽) = sgn(w⊤x), with each component of 𝛽
randomly drawn from [0, 1].

∙ Each x ∈ R10 has its coordinate randomly drawn from [−0.5, 0.5].

19 / 23



6 lines implementation

w = np.zeros(d)

for s in range(1000):

i = np.random.randint(n)

if Y[i] != np.sign(w @ X[i,]):

w += 0.2 * Y[i] * X[i,]

print('Perceptron error:', sum(np.sign(X @ w) != Y)/n)

w = np.zeros(d)

for s in range(1000):

i = np.random.randint(n)

w += 0.2 * (Y[i] - w @ X[i,]) * X[i,]

print('Adaline error:', sum(np.sign(X @ w) != Y)/n)

Y[Y == -1] = 0

w = np.zeros(d)

for s in range(1000):

i = np.random.randint(n)

w += 0.2 * X[i,] * (Y[i] - expit(w @ X[i,]))

print('Logistic regression error:', sum(np.abs(np.around(expit(X @

w)) != Y))/*n)

We only need 5 or 6 lines for learning and testing for each algorithm.
20 / 23



Sample output

Perceptron error: 0.075

Adaline error: 0.06

Logistic regression error: 0.025

Note that for the perceptron, we can get a zero error by always choosing
a misclassified example, instead of randomly choosing an example.

21 / 23



Your turn

Which of the following statement is correct? (Multiple choice)

(a) There is a well-known efficient algorithm to find a perceptron with
minimum classification error on any dataset.

(b) Adaline solves a classification problem by solving a regression
problem.

(c) Adaline always finds a linear decision boundary with minimum
classification error.

22 / 23



What You Need to Know

∙ Two approaches to train linear classifiers for non-linearly separable
data

∙ Adaline (using quadratic loss as a surrogate loss for 0/1 loss)

∙ Logistic approximation (using log-loss as a surrogate loss for 0/1
loss)

23 / 23


