
Hopfield Networks

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 19



Hopfield Nets

∙ Developed by William Little (1974) and John Hopfield (1982).
∙ Hopfield nets are neural nets designed as a model of human
memory.

Architecture: a collection of linear threshold units (Perceptrons)
connected to each other.
Memorization: adjust the network weights to ‘remember’ input
patterns.
Retrieval: initialise neuron states to be a partial or noisy input, then
use the network weights to perform computation to retrieve the
matching pattern in memory.

∙ In other terms, Hopfield nets serve as content-addressable or
associative memory systems with binary threshold nodes.

Little, The existence of persistent states in the brain, 1974

Hopfield, Neural networks and physical systems with emergent collective computational abilities, 1982

2 / 19



Illustration

∙ Top row: some images that we pick.
∙ Bottom row: binarized versions of the chosen images

We use binary images because a Hopfield net can only ‘remember’
binary images.

3 / 19



∙ Hopfield net is first trained to ‘remember’ the original binary
images, then it can ‘recall’ the original image given a partial/noisy
version of it.

4 / 19



How Does a Hopfield Net Work

∙ The activation state of each neuron in the network represents one
bit of the current pattern that the network is ‘thinking’ about.

∙ Given a set of patterns, the weights of the network are first trained
to “memorize” the pattern.

∙ Given a partial or noisy pattern, the network initialises its neuron
activation states to the given pattern, and then run updates until
convergence.

5 / 19



Network Structure

∙ We want to deal with binary patterns consisting of m -1 or +1.

∙ We need m neurons in the Hopfield network.
∙ Each is a linear threshold unit, with all other neurons’ outputs
(activation states) as the inputs.

The weight for neuron i as an input to neuron j is wij .
The weights are symmetric, that is, wij = wji .
The output of neuron i is 1 if the weighted sum is ≥ 0 and -1
otherwise.

6 / 19



∙ A Hopfield net is a recurrent network, i.e., there are cycles in the
architectural graph.

1 2

34

w12

w21

w13

w31

w14w41 w23w32

w24

w42

w34

w43

A Hopfield net with 4 neurons

7 / 19



Training

Hebbian learning (repetition reinforces a synapse)

∙ Initially, set all weights to 0.

∙ Given a pattern a = (a1, . . . , am) ∈ {−1,+1}m, the network
updates each weight wij for i ̸= j using

wij ← wij + aiaj

Equivalently, update perceptron i with example (a, ai ).
∙ Remarks

The connection between i and j is strengthened if both units are on,
and is weakened otherwise.
The weights remain symmetric.
This allows learning to remember patterns in an incremental way.

8 / 19



Hopfield’s weight formula

∙ Assume we have n patterns a1, . . . , an with ai = (ai1, . . . , aim),
then the weights are set as follows

wij =

{︃∑︀n
s=1 asiasj , i ̸= j ,

0, i = j .

9 / 19



Example: one pattern only

∙ Assume we have only one pattern (−1, 1, 1,−1, 1).
∙ Then w12 = −1 · 1 = −1, w13 = −1 · 1 and so on.

∙ The complete weight matrix is given by

(wij) =

⎛⎜⎜⎜⎜⎝
0 −1 −1 1 −1
−1 0 1 −1 1
−1 1 0 −1 1
1 −1 −1 0 −1
−1 1 1 −1 0

⎞⎟⎟⎟⎟⎠

10 / 19



Example: two patterns

∙ Assume we have two patterns (−1, 1, 1,−1, 1) and
(1,−1, 1,−1, 1), then the weight matrix is

(wij) =

⎛⎜⎜⎜⎜⎝
0 −2 0 0 0
−2 0 0 0 0
0 0 0 −2 2
0 0 −2 0 −2
0 0 2 −2 0

⎞⎟⎟⎟⎟⎠

11 / 19



Retrieving a Pattern

∙ Given a partial or noisy pattern a = (a1, . . . , am).

∙ We first set the activation state of each neuron to the
corresponding ai .
∙ Now repeatedly update the activation states of the neurons until
they don’t change

we need to decide the order of the updates — there are different
ways to do this (discussed later)
when the i-th neuron is chosen to be updated, we simply recompute
its activation

ai ← sgn(w·i · a)

12 / 19



Example

∙ Consider the previous network trained with two patterns.

∙ Assume we are given a pattern (1, 1, 1, 1, 1).

∙ The updated value of a3 is

sgn(w·3 · a) = sgn(w13a1 + w23a2 + w33a3 + w43a4 + w53a5)

= sgn(0 · 1 + 0 · 1 + 0 · 1 + (−2) · 1 + 2 · 1)
= 1

13 / 19



Sequencing the Updates

∙ Synchronous update: all nodes are updated at the same time

biologically not realistic as neurons may update at different rates.

∙ Asynchronous update: randomly select a neuron and then update it
∙ Semi-random update: update all nodes in one step, but update
nodes in a random order

commonly used in practice

14 / 19



Finishing off the example

∙ We have the network trained with two patterns.

∙ We are given the pattern (1, 1, 1, 1, 1).

∙ Update the nodes in the following order

3, 1, 5, 2, 4, 3, 1, 5, 2, 4, . . .

∙ What’s the final pattern?

15 / 19



Update New pattern

a′3 = sgn((0, 0, 0,−2, 2) · (1, 1, 1, 1, 1)) = sgn(0) = 1 (1, 1, 1, 1, 1)
a′1 = sgn((0,−2, 0, 0, 0) · (1, 1, 1, 1, 1)) = sgn(−2) = −1 (−1, 1, 1, 1, 1)
a′5 = sgn((0, 0, 2,−2, 0) · (−1, 1, 1, 1, 1)) = sgn(0) = 1 (−1, 1, 1, 1, 1)
a′2 = sgn((−2, 0, 0, 0, 0) · (−1, 1, 1, 1, 1)) = sgn(2) = 1 (−1, 1, 1, 1, 1)
a′4 = sgn((0, 0,−2, 0,−2) · (−1, 1, 1, 1, 1)) = sgn(−4) = −1 (−1, 1, 1,−1, 1)

Doing this one more iteration shows that the pattern does not change.
So we recover the pattern (-1, 1, 1, -1, 1).

16 / 19



Memory and Energy (Optional)

∙ The energy of the current activation state a of a Hopfield net is

Ew(a) = −
1

2

∑︁
i ,j

wijaiaj ,

where w is the weight matrix (wij).
∙ Memorization: choose w so that each interested pattern a is likely
to be a local minimizer of Ew.

Local minimizer: a.k.a. attractor, stable pattern

∙ Retrieval: given a partial/noisy pattern a′, move it towards a local
minimizer of Ew.

17 / 19



Your Turn

Which of the following statement is correct? (Multiple choice)

(a) A Hopfield net is proposed as a model of human memory.

(b) A Hopfield net is a recurrent neural net.

(c) The weight matrix of a Hopfield net is symmetric with 0’s on the
diagonal.

18 / 19



What You Need to Know

∙ A Hopfield net is inspired by how human memory works.

∙ A Hopfield net has a recurrent architecture.

∙ Memorization using Hebbian learning or Hopfield’s formula.

∙ Retrieval using synchronous, asynchronous, or semi-random
updates.

19 / 19


