
Gradient-based Learning

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 25

Learning as Optimization

∙ Many learning problems are directly formulated as an optimization
problem.

e.g. learning a Bernoulli/Gaussian distribution
e.g. OLS, ridge regression
e.g. naive Bayes classifier, logistic regression, SVM

∙ Some of the optimization problems have closed-form solutions, but
many do not.

e.g. logistic regression and SVM do not have closed-form solutions

∙ We often need to use numerical methods to solve optimization
problems in machine learning.

2 / 25

The Hill Climber Analogy

∙ You want to climb to the peak of a hill, but you have very limited
visibility due to a heavy fog.

∙ You have a tool that allows you to measure the steepness of the
hill at your location along any direction.

∙ Using the tool takes a lot of time, and you do not want to use it
too frequently.

3 / 25

∙ We can choose to climb along the steepest uphill direction.

∙ However, we need to determine how much we climb along that
direction each time after we measure steepness so that we do not
go off the track and then possibly go downhill instead.

∙ Similarly, if we want to go downhill, we can choose the steepest
downhill direction.

4 / 25

∙ It is illustrative to look at how this translates to maximizing the
function

f (x , y) = −0.1x2 − y2

∙ The surface plot of the function is shown below

5 / 25

∙ The gradient field of the function is shown below.

∙ The red arrows indicate the directions and magnitudes of gradients.

∙ We can see that the gradients generally point towards the
maximizer: in fact these are the steepest ascent directions, and the
negative gradients are the steepest descent directions.

6 / 25

Gradient Descent

∙ Now we focus on the minimization problem, and consider
minimizing a function f (w).

∙ Gradient descent is the most basic gradient-based method for
minimizing a function.

∙ Assume that we start from some w0, then at iteration t ≥ 0, we
compute the next iterate wt+1 using

wt+1 = wt − 𝜂t ∇ f (wt),

where 𝜂t ≥ 0 is a step size to be chosen.

∙ The step size is often called the learning rate when f (w) is an
objective function in machine learning.

7 / 25

Why does gradient descent work

∙ Using the first order Taylor series expansion, for any small vector d ,

f (w + d) ≈ f (w) + d⊤∇ f (w).

∙ Hence for small 𝜂, we have

f (wt+1) = f (wt − 𝜂t ∇ f (wt))

≈ f (wt) + (−𝜂t ∇ f (wt))
⊤∇ f (wt)

= f (wt)− 𝜂t‖∇ f (wt)‖22
< f (wt),

if ∇ f (w) ̸= 0. That is, the function value decreases if we move
along the negative gradient direction by a small step.

8 / 25

Examples

∙ Consider the following minimization problem

min
x∈R

f (x , y) = x2 + y2

∙ Clearly, the minimizer is (0, 0).

∙ We consider how gradient descent works starting from (2, 3) using
different step sizes.

9 / 25

∙ Constant step size 𝜂s = 0.25 for all s.

(x1, y1) = (2, 3).
(x2, y2) = (x1, y1)− 0.25 · 2(x1, y1) = 0.5(x1, y1).
(x3, y3) = (x2, y2)− 0.25 · 2(x2, y2) = 0.5(x2, y2) = 0.52(x1, y1).
. . .
(xs , ys) = 0.5s−1(x1, y1) → (0, 0) as s → ∞.

∙ In this case, we never find the minimizer in finitely many iterations,
but we can find a solution that is arbitrarily close to the minimizer
after sufficiently many iterations.

10 / 25

∙ Constant step size 𝜂s = 1 for all s.

(x1, y1) = (2, 3).
(x2, y2) = (x1, y1)− 1 · 2(x1, y1) = −(x1, y1).
(x3, y3) = (x2, y2)− 1 · 2(x2, y2) = −(x2, y2) = (x1, y1).
. . .
(xs , ys) = (−1)s−1(x1, y1) does not converge to the minimizer.

∙ We never encounter a solution that is close to the minimizer in this
case!

11 / 25

∙ As another example, consider minimizing the MSE for OLS (see
Lecture 2)

Rn(𝛽) =
1

n

∑︁
i

(x⊤i 𝛽 − yi)
2 =

1

n
‖X𝛽 − y‖22.

∙ Then we have ∇Rn(𝛽) =
2
nX

⊤(X𝛽 − y).

∙ Gradient descent is given by

𝛽t+1 = 𝛽t −
2𝜂t
n

X⊤(X𝛽t − y).

12 / 25

Step Size Rules

∙ As can be seen from previous slides, the step size is important.
∙ It determines whether gradient descent converges or not, and how
fast it converges. To make gradient descent converge fast,

The step size need to be small enough to guarantee function value is
decreasing.
The step size need to be large enough so that there is a sufficient
decrease.

It is often not easy to choose a good step size.

∙ There are some commonly used rules for choosing the step sizes.

13 / 25

Fixed step sizes

∙ We can choose the step sizes in advance, such as setting 𝜂t to a
constant or 𝜂t =

1√
t+1

.

∙ For some problems, we know how to choose a constant step size so
that gradient descent converges efficiently.

∙ In general, we need to try diminishing step sizes though.

14 / 25

Line search (optional)

∙ A natural idea is to choose 𝜂t to minimize f (wt − 𝜂t ∇ f (wt)).

∙ This is called line search, and is itself a minimization problem that
is hard to solve exactly.

∙ A useful rule to approximately find 𝜂t is the Goldstein-Armijo rule:
Find wt+1 = wt − 𝜂t ∇ f (wt) such that

𝛼∇ f (wt)
⊤(wt −wt+1) ≤ f (wt)− f (wt+1),

𝛽∇ f (wt)
⊤(wt −wt+1) ≥ f (wt)− f (wt+1),

where 0 < 𝛼 < 𝛽 < 1.
That is, the decrease in function value is in [c𝛼, c𝛽], where
c = 𝜂t‖∇ f (x)‖2).

15 / 25

Gradient Checking

∙ Implementating gradient descent can be tricky, because for
machine learning problems, the gradient can be difficult to
compute and implement.

∙ Assuming that we have implemented the objective function f (w)
and the exact gradient ∇ f (w), then we can use the numerical
gradient to check the gradient implementation.

∙ That is, we choose a small 𝛿 and check whether

𝜕f (w)

𝜕wi
≈ f (w + 𝛿ei)− f (w)

𝛿
,

where ei is the i-th standard unit vector.

∙ Numerical gradients are easy to implement but slow, while exact
gradients are hard to implement but efficient.

16 / 25

Stochastic Gradient Descent (SGD)

∙ In machine learning, the objective function f (w) often has the form

f (w) =
1

n

∑︁
i

fi (w),

where fi (w) measures how the model w fits example i .

e.g., in OLS, fi (w) = (w⊤xi − yi)
2.

∙ In SGD, instead of using full gradients computed on the whole
dataset, we use stochastic gradients computed on random selected
examples.

17 / 25

∙ That is, we update wt to

wt+1 = wt − 𝜂t g̃t ,

where g̃t = ∇ fi (w) with i randomly sampled from 1, . . . , n.

∙ We often use the mini-batch version of SGD, in which we set

g̃t =
1

|S |
∑︁
i∈S

∇ fi (w),

where S is a random subset of 1, . . . , n.

∙ While SGD can jump around in the solution space, the mini-batch
version is much more stable.

18 / 25

∙ Gradient descent has a smooth trajectory, while SGD has a
zigzagging trajectory.

19 / 25

∙ SGD is often computationally attractive when the dataset is very
large.

∙ In practice, if the dataset has a lot of redundancy, SGD is able to
find a good solution quickly even though it uses only a subset of
the examples (typically the case for large datasets).

20 / 25

Revisiting the Perceptron

∙ The Perceptron algorithm can be seen as a special case of SGD.

∙ Consider the loss function

L((x, y),w) = (−yw⊤x)+,

for the classifier hw(x) = sgn(w⊤x). Here (x)+ = max(x , 0) is the
positive part function.

∙ The loss is 0 for correct classification, and −yw⊤x for incorrect
classification.

∙ The empirical risk is

Rn(w) =
1

n

n∑︁
i=1

(−yiw
⊤xi)+,

∙ The Perceptron algorithm is SGD applied to Rn(w).

21 / 25

Revisiting Adaline

∙ The objective function is

Rn(w) =
1

n

∑︁
i

(w⊤xi − yi)
2.

∙ Adaline is SGD applied to MSE above.

22 / 25

More on Gradient-based Learning

∙ Gradient descent is the simplest algorithm to use gradients for
optimization.

∙ We will see many more sophisticated algorithms in later lectures.

momentum, AdaDelta, Adam...

23 / 25

Your turn

Which of the following statement is correct? (Multiple choice)

(a) Gradient descent minimizes a function by moving along the
steepest descent direction.

(b) The best step size for gradient descent is 1.

(c) Several early neural net training algorithms are special cases of
SGD.

24 / 25

What You Need to Know

∙ Gradient descent

Intuition, update formula, justification
Choice of step size

∙ Stochastic gradient descent

Capable of exploiting the redundancy in large datasets
Special cases: Perceptron, Adaline

25 / 25

