
Multilayer Perceptrons

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 32



ALVINN Driving at 70 MPH (1993)

Pomerleau, Knowledge-based training of artificial neural networks for autonomous robot driving, 1993

2 / 32



∙ ALVINN (Autonomous Land Vehicle In Neural Networks) is an
early autonomous driving system.

∙ It learns a neural network (specifically, a multilayer perceptron with
a single hidden layer) to map a camera image to a steering decision.

3 / 32



Multilayer Perceptron (MLP)

input
layer

hidden
layer

hidden
layer

output
layer

4 / 32



Structure of an MLP

∙ The perceptron and the Adaline are the simplest kinds of MLPs.
∙ An MLP is also known as a multilayer feedforward neural network

in a feedforward neural network, the connections do not form cycles
(note that each connection points from the input neuron to the
output neuron).
in a multilayer network, the neurons are grouped into different layers

∙ The depth or the number of layers is the number of all layers with
tunable parameters (i.e. all layers except the input layer).

∙ An MLP can be seen as a series of complex transformations.

5 / 32



Naming the layers and neurons

∙ The input layer is also called the first/bottom layer, and neurons in
it are called input neurons/units.

∙ The output layer is also called the last/top layer, and neurons in it
are called output neurons/units.

∙ Layers between the input and the output layers are called hidden
layers, and neurons in them are called hidden neurons/units.

∙ A neural with more than one hidden layer is called a deep neural
network.

6 / 32



input
layer

hidden
layer

hidden
layer

output
layer

∙ This is a 3 layer MLP, or a 2 hidden layer MLP.

∙ There are 5 input units, 7 hidden units for each of the two hidden
layers, and 3 output units.

7 / 32



Activation function

∙ Each neuron applies a function to transform the weighted input
sum to an output.

∙ This function is called the transfer function or the activation
function.
∙ The sigmoid activation function 𝜎(·) is defined by 𝜎(u) = 1

1+e−u .

for a vector u = (u1, . . . , ud), we shall use 𝜎(u) to denote
(𝜎(u1), . . . , 𝜎(ud)), that is, we apply the sigmoid function to each
component of u.

∙ Another commonly used activation function is the rectifier
(u)+ = max(0, u). A linear unit using the rectifier activation is
called a ReLU (rectified linear unit).

8 / 32



An MLP Example

∙ Consider the following MLP, with sigmoid hidden units and identity
output activation, and weights shown on the edges.

x1

x2

h1

h2

o

1

2

1

1

1

1

∙ Then the output o is obtained using the following computation(︂
h1
h2

)︂
= 𝜎

(︂
W1

(︂
x1
x2

)︂)︂
, o = W2

(︂
h1
h2

)︂
,

where W1 =

(︂
w1,11 w1,12

w1,21 w1,22

)︂
=

(︂
1 2
1 1

)︂
, and

W2 =
(︀
w2,1 w2,2

)︀
=

(︀
1 1

)︀
.

9 / 32



∙ The function computed by the network can be written as

o = W2𝜎

(︂
W1

(︂
x1
x2

)︂)︂
=

1

1 + e−x1−2x2
+

1

1 + e−x1−x2
.

∙ When x1 = 1, x2 = 1, we have(︂
h1
h2

)︂
=

(︂
𝜎(3)
𝜎(2)

)︂
, o = h1 + h2 = 𝜎(3) + 𝜎(2) ≈ 1.83

10 / 32



∙ Assume that the observed output for the input (1, 1) is y = 2, and
we want to minimize the squared error L = (o − y)2.

∙ For gradient-based learning, we want to compute the gradient of L
wrt the network weights W1 and W2.

∙ For 𝜕L
𝜕w2,1

, using the chain rule

𝜕L

𝜕w2,1
=

𝜕L

𝜕o

𝜕o

𝜕w2,1
= 2(o − y)h1.

∙ Derivatives like 𝜕L
𝜕w1,11

are much more complex.

∙ We see that even for this small MLP, it is tedious to compute the
gradient of the error function.

11 / 32



Backpropagation

∙ The backpropagation algorithm provides an efficient way to
compute the gradient of the error function of a feedforward neural
net, which is essential in gradient-based learning.
∙ The algorithm performs a forward pass and a backward pass
through the neural net

the forward pass propagates information from the input neurons to
the output neurons to compute the outputs of all neurons
the backward pass propagates information from the output neurons
to the input neurons to compute derivatives

12 / 32



∙ We illustrate the backpropagation algorithm on an MLP f (x;w)

all hidden units are sigmoid units
there is one output neuron with identity activation function
the loss is the squared error (strictly speaking, 1/2 squared error)

L =
∑︁
i

1

2
(f (xi ;w)− yi )

2.

∙ Notations

P(j): the set of parents of unit j .
oi : the output of unit i . For an input neuron, oi denotes its input.
wij : weight on the connection from unit i to unit j .

13 / 32



Forward propagation

For each neuron j ,

oj ←

{︃
𝜎(
∑︀

i∈P(j) wijoi ), if j is not the output neuron.∑︀
i∈P(j) wijoi , if j is the output neuron.

when all input oi ’s have been computed.

we don’t need to keep the neurons waiting for their inputs to be
ready.
instead, we compute the outputs one layer at a time from the input
layer to the output layer (as illustrated in the small numerical
example).

14 / 32



The backpropagation algorithm

∙ We need to compute the derivative gij of the error function wrt to
each weight wij

∙ We only need to figure out how to do this for one example (x, y)
if there are multiple examples, the gradient is the sum of the
individual gradients computed on these examples

15 / 32



1: Compute all oi ’s.
2: For the output unit k,

𝛿k ← (ok − y).

3: For each hidden unit i ,

𝛿i ← oi (1− oi )
∑︁

j∈C(i)

wij𝛿j

when all input 𝛿j ’s have been computed.
4: For each connection (i , j),

gij ← 𝛿joi .

16 / 32



Derivation (optional)

∙ Notations

L(ok , y) =
1
2 (ok − y)2 is the loss function (neuron k is output).

sj =
∑︀

i∈P(j) wijoi is the weighted input sum for neuron j .

𝛿i = 𝜕L/𝜕si .

∙ For the output unit k ,

𝛿k =
𝜕L

𝜕sk
=

𝜕L

𝜕ok

𝜕ok
𝜕sk

= (ok − y).

This is because ok = sk (identity activation).

17 / 32



∙ Using the chain rule, we have

𝛿i =
𝜕L

𝜕si
=

∑︁
j∈C(i)

𝜕L

𝜕sj

𝜕sj
𝜕oi

𝜕oi
𝜕si

=
∑︁

j∈C(i)

𝛿jwijoi (1− oi ).

This is because oi = 𝜎(si ) and 𝜎′(si ) = oi (1− oi ).

∙ In addition, we have

𝜕L

𝜕wij
=

𝜕L

𝜕sj

𝜕sj
𝜕wij

= 𝛿joi .

18 / 32



Finishing off the small MLP example

∙ We label the nodes as follows
1

2

3

4

5

1

2

1

1

1

1

∙ We first compute the oi ’s, then 𝛿i ’s, and finally gij .

i oi 𝛿i

1 1 -
2 1 -
3 𝜎(3) 𝛿5w35o3(1− o3)
4 𝜎(2) 𝛿5w45o4(1− o4)
5 𝜎(3) + 𝜎(2) o5 − 1

(i , j) gij

(1, 3) o1𝛿3
(2, 3) o2𝛿3
(1, 4) o1𝛿4
(2, 4) o2𝛿4
(3, 5) o3𝛿5
(4, 5) o4𝛿5

19 / 32



Extensions

∙ We can extend the backpropagation algorithm to handle different
loss functions, activation functions and multiple output units.

∙ By choosing different loss functions and using multiple output
neurons, we can train an MLP for classification and density
estimation.

20 / 32



Why Deep Architectures?

∙ It is known that any function can be approximated arbitrarily well
by a single hidden layer MLP (universal approximation theorems).

∙ Why do we still need to care about deep neural networks?

21 / 32



Inspiration from Nature

The primate visual cortex is hierarchical

Kruger, Janssen, Kalkan, Lappe, Leonardis, Piater, Rodriguez-Sanchez, and Wiskott, Deep hierarchies in the primate visual
cortex: What can we learn for computer vision?, 2013

22 / 32



Deeper Can Be More Compact

Representational power of neural nets

∙ Every boolean function can be represented by network with single
hidden layer but might require exponential (in number of inputs)
hidden units.

∙ Every bounded continuous function can be approximated with
arbitrarily small error, by network with one hidden layer.

∙ Any function can be approximated to arbitrary accuracy by a
network with two hidden layers.

23 / 32



Deeper can be more compact

∙ When a function can be compactly represented by a deep network,
it may need a very large shallow network to represent it.

∙ E.g. There are functions computable with a depth k network
consisting of a polynomially many perceptron units that require
exponentially many perceptron units when using a depth k − 1
network.

24 / 32



Features: Engineering to Learning

Traditional models as neural nets

x0 = 1

x1

x2

...

xd

Σ

w1

w2

wd

w0

x⊤w

Least squares regression f (x) = w⊤x

25 / 32



x0 = 1

x1

x2

...

xd

Σ

w1

w2

wd

w0

x⊤w 𝜎(x⊤w)

Logistic regression f (x) = p(y = 1 | x) = 1

1+e−w⊤x

26 / 32



Traditional learning: handcrafted features + classifier learning

∙ Many other traditional learning algorithms can be seen as neural
networks.

∙ They build classifiers using handcrafted features.

27 / 32



Deep learning: feature learning + classifer learning

input
layer

hidden
layer

hidden
layer

hidden
layer

hidden
layer

hidden
layer

output
layer

∙ Deep learning uses deep architectures to additionally learn features.
∙ Deeper layers build abstract representations of previous layers.

e.g. pixels → edges → noses, eyes, ears → face

28 / 32



A Demo

∙ We want to distinguish points on two spirals.

∙ Each unit can be visualized by drawing a heat map for its output.

∙ Try different # of hidden layers: 1, 2, 3, 4, 5, 6.

29 / 32

http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=8&seed=0.78122&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=8,8&seed=0.78122&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=8,8,8&seed=0.78122&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=8,8,8,8,8,8&seed=0.78122&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=8,8,8,8,8&seed=0.78122&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=8,8,8,8,8,8&seed=0.78122&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false


∙ This trained 6-layer MLP is able to learn fairly complex decision
boundaries.

∙ While neurons in shallow layers represent simple features (e.g.
straight lines), neurons in deeper layers pick up useful high-level
features (e.g. parts of the spirals).

30 / 32



Your Turn

Which of the following statement is correct? (Multiple choice)

(a) In a multilayer perceptrons, neurons are organized into several
layers with connections between adjacent layers only.

(b) Backpropagation allows efficient computation of the gradient of
the loss function of an MLP wrt the network parameters in a
recursive manner.

(c) Deep neural nets can possibly learn complex features.

31 / 32



What You Need to Know...

∙ Multilayer perceptrons (aka multilayer feedforward networks)

Specifying an MLP: structure and activation function
Forward propagation (compute output for a given input)
Backpropagation for gradient computation

∙ Motivations for deep networks

Inspiration from nature
Deeper can be more compact
Replacing feature engineering by feature learning

32 / 32


