
Deep Learning Software

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 26

Gradient-phobia

∙ Backprop provides an efficient way to compute the gradient of the
error function for a neural network.

∙ It is helpful to understand the algorithm but it is not easy to
implement

you probably never want to implement it if you don’t have to
in the old days, it is not unusual that people spent hours to derive
expressions for the gradients, and then hours for implementation and
debugging...

2 / 26

∙ The good news is that for practical purposes, you don’t have to
implement gradient computation for neural nets

Many machine learning software platforms now provide automatic
differentiation (autodiff) tools
Autodiff automatically compute the gradients for you — you only
need to write code to evaluate the function

3 / 26

Software Frameworks

4 / 26

∙ Some early software frameworks have become obsolete (e.g.
Theao, Caffe)

∙ TensorFlow, originally developed by Google Brain Team, is the
most popular deep learning frameworks, with a few high-level API
built on top of it (e.g. Sonnet, Keras, Swift, TFLearn)

∙ PyTorch, developed by Facebook, is a more recent player, but has
become a main competitor of TensorFlow.

Simple and flexible
We will discuss PyTorch in this lecture.

5 / 26

Automatic Gradient Computation

∙ Deep learning algorithms mostly use gradient-based learning.

∙ A key building block of deep learning frameworks is the support for
automatic gradient computation.

∙ There are three main approaches to do this

Numerical differentiation (or finite differencing)
Symbolic differentiation
Automatic differentiation (autodiff, or algorithmic differentiation)

6 / 26

Numerical differentiation

∙ If we have implemented the function f (w), then we can
numerically compute its gradient by choosing a small 𝛿, and
compute each partial derivative using

𝜕f (w)

𝜕wi
≈ f (w + 𝛿ei)− f (w)

𝛿
,

where ei is the i-th standard unit vector.

∙ This is easy to implement, but approximate and slow.

7 / 26

Symbolic differentiation

∙ We represent a function symbolically, and apply differentiation
rules to generate symbolic representation of its gradient.

∙ For example, if f (a, b) = a2b + ab2, a direct application of
differentiation rules lead to 𝜕f

𝜕a = 2ab + a20 + 1b2 + a0.
∙ Symbolic differentiation can lead to large symbolic representations
and inefficient code.

e.g. consider f100(x) defined recursively by f1(x) = x , and

fk+1(x) = ex
2+fk (x) for k ≥ 1.

8 / 26

Automatic differentiation (Autodiff)

∙ Autodiff transforms the code for evaluating the function to the
code for evaluating the gradient.

∙ The computation for the function is broken down into a
composition of elementary operations, and then chain rule is
repeatedly applied to these operations.

∙ This uses the concept of computational graph, and can be done in
forward mode or reverse mode.

∙ How is this different from symbolic computation?

We pass values around, not symbols.

9 / 26

Autodiff
Computational graph

∙ Consider the function f (x1, x2) = ex1 + x1x2.

∙ We can break down its computation as shown in the table below,
and represent it using a computational graph.

w1 = x1
w2 = x2
w3 = ew1

w4 = w1w2

w5 = w3 + w4

f (x1, x2)

+

e *

x1 x2

w1 w1 w2

w3 w4

w5

∙ Each node stores its output and passes it forward (bottom-up in
our example).

10 / 26

Forward mode

∙ Consider computing 𝜕f
𝜕x1

.

∙ In forward mode autodiff (aka forward accumulation), we

recursively compute each ẇi =
𝜕wi
𝜕x1

using the chain rule.

ẇ5 is our target 𝜕f
𝜕x1

.

E.g. w3 = ew1 ⇒ 𝜕w3

𝜕x1
= ew1 𝜕w1

𝜕x1
⇒ ẇ3 = ew1ẇ1.

∙ This requires traversing the graph in the forward direction
(bottom-up in our example).

11 / 26

∙ The recursive computation is shown in the table and the
computational graph below.

ẇ1 = 1
ẇ2 = 0
ẇ3 = ew1ẇ1

ẇ4 = ẇ1w2 + w1ẇ2

ẇ5 = ẇ3 + ẇ4

f (x1, x2)

+

e *

x1 x2

ẇ1 ẇ1 ẇ2

ẇ3 ẇ4

ẇ5

∙ We pass both the output and its derivative for each node.

∙ Note that the intermediate results are values (not symbols).

12 / 26

Reverse mode

∙ Consider computing 𝜕f
𝜕x1

and 𝜕f
𝜕x2

.

∙ In reverse mode autodiff (aka backward accumulation), we
recursively compute w̄i =

𝜕f
𝜕wi

using the chain rule.

w̄1 and w̄2 are our targets 𝜕f
𝜕x1

and 𝜕f
𝜕x2

respectively.
E.g. f depends on w1 vias w3 = ew1 and w4 = w1w2

⇒ 𝜕f
𝜕w1

= 𝜕f
𝜕w3

𝜕w3

𝜕w1
+ 𝜕f

𝜕w4

𝜕w4

𝜕w1
⇒ w̄1 = w̄3e

w1 + w̄4w2.

∙ This requires traversing the graph in the backward direction
(top-down in our example).

13 / 26

∙ The recursive computation is shown in the table and the
computational graph below.

w̄5 = 1
w̄4 = w̄5

w̄3 = w̄5

w̄2 = w̄4w1

w̄
(3)
1 = w̄3e

w1

w̄
(4)
1 = w̄4w2

w̄1 = w̄
(3)
1 + w̄

(4)
1

f (x1, x2)

+

e *

x1 x2

w̄5

w̄4w̄3

w̄2w̄
(3)
1 w̄

(4)
1

∙ Note that the intermediate results are values (not symbols).

∙ Backprop is a special case of reverse mode autodiff.

14 / 26

PyTorch

∙ PyTorch has a very polished Python interface, and a C++
frontend.

∙ PyTorch provides great support for

Tensor computing (like NumPy), with strong GPU acceleration
Deep neural networks, based on autodiff.

∙ See https://pytorch.org/ for details including installation
instructions, tutorials, and documentation.

15 / 26

https://pytorch.org/

Neural Networks in PyTorch

∙ PyTorch provides several packages

torch: a general-purpose tensor package with GPU support
torch.autograd: a package for automatic differentiation
torch.nn: a neural net library with common layers and loss functions
torch.optim: contains common optimization algorithms

∙ We cover basics of these packages in this lecture.

16 / 26

Tensor Computation

import torch

x, y, z = torch.zeros(3, 3), torch.ones(3, 3), torch.rand(3, 3)

print(x, y, z)

print(x + y)

print(y @ z) # matrix multiplication

print(z.int()) # convert to integer array

print(z.numpy()) # convert to numpy array

if torch.cuda.is_available(): # use GPU if available

y, z = y.cuda(), z.cuda()

print(y @ z)

17 / 26

Autodiff for f (x) = ‖x‖22

def f(x):

return torch.dot(x, x)

x = torch.ones(2, requires_grad=True)

y = f(x)

use the autograd library to compute all gradient information

y.backward()

print the gradient of the function with respect to x

print(x.grad)

Exercise: try replacing f with your favourite function.

18 / 26

OLS using PyTorch

Data

def regression_data(n=500, d=2):

X = torch.rand(n, d)

beta = torch.rand(d+1)

Y = torch.mv(X, beta[1:]) + beta[0] + torch.rand(n) * 0.1

return X, Y

X, Y = regression_data()

∙ The output is a perturbed linear function of the inputs.

19 / 26

First version (exploit autograd)

X = torch.cat([torch.ones(X.shape[0], 1), X], dim=1) # add 1

beta = torch.zeros(X.shape[1], requires_grad=True)

for i in range(200):

loss = torch.mean((X @ beta - Y)**2)

if beta.grad is not None:

beta.grad.zero_() # important: reset the stored gradient to 0

loss.backward()

beta.data.add_(-0.5*beta.grad.data)

print(beta)

∙ We only use the autodiff feature in PyTorch, but control all other
aspects.

∙ Exercise: try the above code and use the closed-form formula to
compute 𝛽. Do you get the same answers? (You should)

20 / 26

Second version (exploit optim)

import torch.optim as optim

X = torch.cat([torch.ones(X.shape[0], 1), X], dim=1) # add 1

beta = torch.zeros(X.shape[1], requires_grad=True)

optimizer = optim.SGD([beta], lr=0.5, momentum=0)

for i in range(200):

optimizer.zero_grad()

loss = torch.mean((X @ beta - Y)**2)

loss.backward()

optimizer.step()

print(beta)

∙ We use the SGD optimizer provided by the optim package to zero
gradient and perform gradient update.

21 / 26

Third version (exploit nn and built-in loss functions)

import torch.optim as optim

import torch.nn as nn

from torch.nn.modules.loss import MSELoss

Y = Y.reshape(-1, 1)

net = nn.Linear(2, 1)

optimizer = optim.SGD(net.parameters(), lr=0.5, momentum=0)

mse = MSELoss()

for i in range(200):

optimizer.zero_grad()

loss = mse(net(X), Y)

loss.backward()

optimizer.step()

for param in net.parameters():

print(param)

∙ We use the nn module to define our neural net for OLS, and use
the builtin MSE loss to compute loss.

22 / 26

More on PyTorch

Defining a general MLP

∙ We can use the nn module to define general MLPs. For example, if
we want to replace the OLS network using a single ReLU hidden
layer MLP, we can define the network as follows

net = nn.Sequential(nn.Linear(2, 10),

nn.ReLU(),

nn.Linear(10, 1))

∙ Exercise: try training the above neural on the toy dataset.

∙ The nn module also implements many other activation funtions.
See the Non-linear Activations sections at
https://pytorch.org/docs/stable/nn.html.

23 / 26

https://pytorch.org/docs/stable/nn.html

Using DataLoader to load mini-batches

∙ We often use SGD to train neural nets. This requires us to split
the dataset into mini-batches and loop through them.

∙ This code below illustrates how to to this.

class DatasetWrapper(Dataset):

def __init__(self, X, y):

self.X, self.y = X, y

def __len__(self):

return len(self.X)

def __getitem__(self, idx):

return self.X[idx], self.y[idx]

data_loader = DataLoader(DatasetWrapper(X, y), batch_size=10,

shuffle=True)

for i, (X, y) in enumerate(data_loader):

print(i, X.shape, y.shape)

24 / 26

Your Turn

Which of the following statement is correct? (Multiple choice)

(a) It is generally easy to manually work out the formula for the
gradient of the loss of a neural net, and implement it from scratch.

(b) Autodiff allows us to implement one, get one free (implement
function evaluation code, get gradient evaluation code free).

(c) PyTorch supports tensor computing and deep neural nets.

25 / 26

What You Need to Know...

∙ Automatic gradient computation approaches

Numerical differentiation
Symbolic differentiation
Automatic differentiation: forward mode, reverse mode

∙ Several key PyTorch packages

torch, torch.nn, torch.autograd, torch.optim

26 / 26

