
Recurrent Neural Networks

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 31

Feedforward and Recurrent Networks

∙ Neural networks can be broadly classified into two types:
feedforward and recurrent.

∙ Feedforward: network is cycle-free

e.g. Perceptron, Adaline, MLP, CNNs (good for array data)

∙ Recurrent: network contains loops

e.g. Hopfield network, and many models for sequence modelling

2 / 31

1 2

34

w12

w21

w13

w31

w14w41 w23w32

w24

w42

w34

w43

A Hopfield net contains many cycles

3 / 31

∙ We will consider recurrent neural networks (RNNs) for sequence
modelling in this lecture

∙ E.g. the following basic RNN architecture

h

x

y

= h0

y0

x0

h1

y1

x1

h2

y2

x2

h3

y3

x3

4 / 31

Applications

Phoneme recognition

Graves, Mohamed, and Hinton, Speech recognition with deep recurrent neural networks, 2013

5 / 31

Handwriting synthesis

Graves, Generating sequences with recurrent neural networks, 2013

6 / 31

Machine translation

Britz, Goldie, Luong, and Le, Massive exploration of neural machine translation architectures, 2017

7 / 31

Image captioning

Vinyals, Toshev, Bengio, and Erhan, Show and tell: Lessons learned from the 2015 mscoco image captioning challenge, 2016

8 / 31

Sequence Modelling

(a) (b) (c) (d)

RNNs are good for various sequence modelling problems, including

(a) One to many, e.g. image captioning
(b) Many to one, e.g. video classification
(c) Many to many, e.g. machine translation
(d) Many to many, e.g. video frame classification

9 / 31

RNNs

∙ The states of hidden neurons in an RNN are updated at each time
step.

∙ For finite sequences, RNNs can be unfolded as feedforward
networks

h

x

y

= h0

y0

x0

h1

y1

x1

h2

y2

x2

h3

y3

x3

∙ The slices at all time steps share the same parameters W

ht = fW (ht−1, xt),

yt = gW (ht).

10 / 31

∙ Example: a simple RNN for time series prediction

ht = tanh(w1ht−1 + w2xt + b),

yt = w3ht ,

where the output yt predicts the next element xt+1 in the time
series.

∙ An RNN can have much more complex structure for the hidden
neurons (e.g. multiple layers).

11 / 31

Memory

∙ RNNs can remember information very far away in the past using
the hidden states.

this is more biologically realistic than memoryless sequence models
such as hidden Markov models, linear dynamical systems.

∙ This allows RNNs to represent very complex functions.

also make them hard to train
for many years, RNNs did not attract much interest because they
are hard to train

12 / 31

An RNN for Summing a Sequence

∙ The RNN below computes the sum of numbers seen so far

h

x

y

w = 1

w = 1

w = 1

= 1

1

1

3

3

2

6

6

3

10

10

4

∙ x is the current input, h is the sum of all seen numbers, and y is
the output (= h). Activations are identity.

∙ The network has been unfolded as a feedforward network with

ht = xt + ht−1,

yt = ht .

13 / 31

Program Evaluation with RNNs

∙ Zaremba and Sutskever, 2014 showed that an RNN can execute
(very) simple short program.

∙ Sample results

Zaremba and Sutskever, Learning to execute, 2014

14 / 31

Backpropagation Through Time

(BPTT)

∙ For gradient-based learning, we need to compute the gradient.

∙ To compute the gradient for an RNN, we can unfold it as a layered
feed-forward network with weight equality constraints.

∙ BPTT is a modification of backprop that takes these constraints
into account.

15 / 31

BPTT

∙ Perform forward pass on the unfolded network

∙ Treat all the weights in the unfolded network as distinct weights,
and run usual backprop to compute derivatives wrt to them

∙ For each weight, set its derivative to be the sum of the derivatives
of its copies at different time steps

16 / 31

Why does BPTT work?

∙ Consider a single weight w , assume that it is repeated for T steps,
and w (t) is its copy at time t.

∙ Assume the objective function is f (w (1), . . . ,w (T)), where other
weights unrelated to w have been suppressed in the notation.

∙ Using the chain rule, we have

𝜕f

𝜕w
=

𝜕f

𝜕w (1)

𝜕w (1)

𝜕w
+ . . .+

𝜕f

𝜕w (T)

𝜕w (T)

𝜕w

=
𝜕f

𝜕w (1)
+ . . .+

𝜕f

𝜕w (T)
.

17 / 31

Exploding and Vanishing Gradients

∙ For vanilla RNN, training can be difficult due to exploding
gradients or vanishing gradients for long sequence.

Exploding gradient: gradient grows very fast in time steps.
Vanishing gradient: gradient vanishes very fast in in time steps.

∙ These problems happen for deep feedforward networks.

recall: GoogLeNet uses auxiliary classifiers to solve this problem.

18 / 31

Example

∙ Consider the following simple RNN

ht = w1 tanh(ht−1) + w2xt + b,

ot = tanh(ht),

where all input x ’s, hidden h’s, and output o’s are real numbers.

∙ We only want to predict a target yt ∈ {−1, 1} correctly for some t
by minimizing L = 1

2(yt − ot)
2.

∙ We consider how the partial derivative 𝜕L
𝜕w1

= (ot − yt)
𝜕ot
𝜕w1

changes
as t increases.

∙ The main term is 𝜕ot
𝜕w1

.

19 / 31

∙ The range of ot and
𝜕ot
𝜕w1

are small for small t’s.

∙ However, there are regions where the gradients are vanishing.

20 / 31

A zoom-in view

21 / 31

Gradients are exploding!

22 / 31

A zoom-in view

23 / 31

Explaining Exploding/Vanishing

Gradients

∙ We don’t have a precise explanation for why/when gradients
explode/vanish in general.

∙ We consider the simple RNN example to get some insights on this.

ht = w1 tanh(ht−1) + w2xt + b,

ot = tanh(ht),

∙ We need quite a bit of mathematical calculations even for this
simple case.

24 / 31

The hyperbolic tangent

∙ The hyperbolic tangent tanh(x) = ex−e−x

ex+e−x is an S shaped curve.

y = tanh x

−2 −1 1 2

−1

1

x

y

∙ It is bounded in the range [-1,1]

∙ Its derivative satisfies tanh(x)′ = 1− tanh(x)2.

25 / 31

A formula for the gradient

∙ Since ot = tanh(ht), we have 𝜕ot
𝜕w1

= (1− o2t)
𝜕ht
𝜕w1

.

∙ Let gt =
𝜕ht
𝜕w1

, then

ht = w1

ot−1⏞ ⏟
tanh(ht−1) + w2xt + b,

⇒ gt = ot−1 + w1(1− o2t−1)gt−1, t ≥ 1,

with g0 = 0.

∙ This gives us a kind of a geometric series representation for gt

gt = ot−1 + w1(1− o2t−1)ot−2 + w1(1− o2t−1)w1(1− o2t−2)gt−2

=
t−1∑︁
i=0

oi

t−1∏︁
j=i+1

(︀
w1(1− o2j)

)︀

26 / 31

How can the gradient vanish

∙ The gradient can vanish when w1 is very large

All oi ’s will be close to -1 or 1.
In addition, w1(1− o2

j) will be very small (roughly

4w1/e
2|w1oi−1+w2xj−1+b|).

Thus the gradient is very small.

∙ This has nothing to do with depth — the cause is in the tanh
activation.

27 / 31

How can the gradient explode

∙ The gradient can explode when |w1| > 1 is moderately large, and
oj are small.

∙ When the depth is large, the exponential dependence of gt on w1

causes the gradient to grow very quickly.

∙ In general, the backprop formula reveals such exponential
dependence for feedforward network, and as long as the derivatives
of the activations are bounded away from 0 when the weights have
absolute values more than 1, the gradient explodes.

28 / 31

Remarks

∙ The tanh activation is a main cause for the vanishing gradient
problem.

∙ Gradients have an exponential dependence on the depth in general,
and this is a main cause for the exploding gradient problem.

∙ It is hard to tell exactly when/why gradient gradient
explodes/vanishes even for a simple RNN.

29 / 31

Your Turn

Which of the following statement is correct? (Multiple choice)

(a) We can design an RNN to calculate sequence sums.

(b) We can design an RNN to calculate the exponential moving
averages of a sequence of numbers.

(c) RNNs are easier to train than MLPs.

(d) When training an RNN, the weights are often initialised to small
random numbers.

30 / 31

What You Need to Know...

∙ RNNs are useful for solving various sequence modelling problems.
∙ Simple RNNs can be unfolded as a feedforward neural network.

This leads to BPTT.

∙ RNNs are prone to the exploding and vanishing gradients problem,
with both the choice of activation function and depth playing a
role here.

31 / 31

