
Recurrent Neural Networks (cont.)

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 20

Recall: Sequence Modelling

(a) (b) (c) (d)

RNNs are good for various sequence modelling problems, including

(a) One to many, e.g. image captioning
(b) Many to one, e.g. video classification
(c) Many to many, e.g. machine translation
(d) Many to many, e.g. video frame classification

2 / 20

STAT3007 is suitable for ...

How will you complete STAT3007 course description?

This course provides a comprehensive and rigorous coverage of deep learning from
both applied and theoretical perspectives. This course is suitable for

3 / 20

STAT3007 is suitable for ...

A sample completion by AI

This course provides a comprehensive and rigorous coverage of deep learning from
both applied and theoretical perspectives. This course is suitable for a broad
spectrum of researchers and engineers, including researchers, practitioners, and
developers with a strong theoretical background.

Faculty:
Vladas Griskevicius
Vlatko Vedral
Simon Heng
Hadi Hariri
Yakoub Toubani

We will cover the fundamentals of deep learning from a theoretical and practical
perspective in a single, integrated course.

Using Python and Scipy, we will implement two different deep learning models: One
for classifying images and another for language processing.

https://app.inferkit.com/demo

3 / 20

https://app.inferkit.com/demo

STAT3007 is suitable for ...

Description on the course profile

This course provides a comprehensive and rigorous coverage of deep learning from
both applied and theoretical perspectives. This course is suitable for both students
who want to build data-driven enabling applications with deep learning, and students
who want to develop a solid foundation for doing research in deep learning in
particular, and machine learning or artificial intelligence more broadly.

3 / 20

Sci-Fi Film Written by LSTM

Sunspring

4 / 20

https://www.youtube.com/watch?v=LY7x2Ihqjmc&t=1m8s

Character-Level Language Models

∙ We can train an RNN to generate natural language text.

∙ We only need to have natural language text as the training data.

∙ The model is trained to predict the next character (i.e., the target
at each time step is the next character)

W

e

e

l

l

c

c

o

o

m

m

e

input

hidden

output

∙ This is at the boundary of supervised learning and unsupervised
learning

No separate teaching signal required.
Supervised learning technique is used.

5 / 20

Details

xt

(0, 1, 0) RNN
ot

(.1, .2, .7)

ht−1

yt

(0, 0, 1)

loss

−y⊤
t ln ot

Input and output representation
∙ We need numerical representations for the input and output.

∙ Assume that there are v characters.
∙ Input: xt ∈ Rv is the one-hot encoding for the t-th input character

Specifically, the one-hot encoding of the i-th character is a vector of
0’s except the i-th entry is 1 (or i-th standard unit vector in Rv).
e.g. a = (1, 0, 0, . . .), b = (0, 1, 0, . . .), . . .

∙ RNN output: ot ∈ Rv is a v -dimensional probability vector
representing the distribution over the next character.

∙ True output: yt ∈ Rv is the one-hot encoding of the true output
character.

6 / 20

Details

xt

(0, 1, 0) RNN
ot

(.1, .2, .7)

ht−1

yt

(0, 0, 1)

loss

−y⊤
t ln ot

Network architecture
∙ We can use different RNNs. For example, we can use a vanilla RNN

ht = fW (ht−1, xt),

ot = gW (ht).

We can also use LSTM or GRU.

∙ The input layer has v neurons.

∙ The output layer has v neurons, fully connected to the hidden units
in the last hidden layer.

6 / 20

Details

xt

(0, 1, 0) RNN
ot

(.1, .2, .7)

ht−1

yt

(0, 0, 1)

loss

−y⊤
t ln ot

Training
∙ Train the RNN to minimize the cross-entropy loss.

i.e. maximize the likelihood

∙ In the above example, y⊤t ln ot = −0 ln .1− 0 ln .2− 1 ln .7.

6 / 20

Prediction

∙ For prediction, input some characters and update the hidden state.

∙ At each time step, we predict the most likely output character, and
then feed it to the RNN as the next input character.

7 / 20

100 iterations
tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne ’nhthnee e plia tklrgd
t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

500 iterations
we counter. He stutn co des. His stanted out one ofler that concossions and was to gearang
reay Jotrets and with fre colt otf paitt thin wall. Which das stimn

1200 iterations
”Kite vouch!” he repeated by her
door. ”But I would be done and quarts, feeling, then, son is people....”

2000 iterations
”Why do what that day,” replied Natasha, and wishing to himself the fact the princess,
Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

Leo Tolstoy’s War and Peace
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

8 / 20

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Obama speech
http://tinyurl.com/nutq8e7

9 / 20

http://tinyurl.com/nutq8e7

Cooking recipe
https://gist.github.com/nylki/1efbaa36635956d35bcc

10 / 20

https://gist.github.com/nylki/1efbaa36635956d35bcc

Machine Translation

∙ We can perform machine translation using a two-RNN architecture
The encoder RNN sequentially reads each word from the source
sentence, and produces the final hidden state as a context vector c
summarizing what has been seen
The decoder RNN produces a translation by sequentially predicting
the next workd based on previous word, previous hidden state and c

Cho, Merrienboer, Gulcehre, Bougares, Schwenk, and Bengio, Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation, 2014

11 / 20

Details

A probabilistic model

∙ Encoder processes each xt in a source sentence (x1, . . . , xn) and
updates its hidden state het−1 sequentially using

het = f e(het−1, xt).

The context vector c is the final hidden state hen.

∙ Decoder defines a distribution on the translations given c via a
generative process that sequentially generates y1, y2, . . .

hdt = f d(hdt−1, yt−1, c),

yt ∼ g(· | hdt , yt−1, c),

where g is a distribution on words in the target language.

12 / 20

∙ The generative process stops when a special end-of-sentence token
is encountered.

∙ Thus the encoder and the decoder together specifies a distribution
p𝜃(y | x) of a translation x given a source sentence x, where 𝜃 are
the parameters of the encoder and the decoder.

13 / 20

Training

∙ Given source-target sentence pairs (x1, y1), . . . , (xN , yN), we can
train the encoder-decoder to maximize the log-likelihood

max
𝜃

1

N

N∑︁
i=1

ln p𝜃(yi | xi).

14 / 20

Prediction

∙ Given a source sentence x, we can use the generative process for
p𝜃(y | x) to generate a random translation.

∙ A better strategy is to predict the most likely translation, but this
is computationally hard.

∙ An approximation is to greedily predict the most likely word at
each time step.

15 / 20

Image Captioning

∙ Image captioner generates a caption for a given image.

∙ This can be treated as a one-to-many sequence modelling problem.

∙ An RNN architecture

Vinyals, Toshev, Bengio, and Erhan, Show and tell: Lessons learned from the 2015 mscoco image captioning challenge, 2016

16 / 20

Details

Training

∙ Training data: images and their captions
∙ Architecture

First input vector is a CNN feature vector for the input image
Subsequent input vectors are word embeddings (real vectors, same
dimension as image feature vector) of words in the caption.
Output at each step is a probability distribution for the next word.

;

17 / 20

∙ Given an image I and a caption S1:T , the likelihood on this
example has the form

p𝜃(S1:T | I) =
T∏︁
t=1

p𝜃(St | I ,S1:t−1),

where 𝜃 is the set of model parameters, and S0 is a special
start-of-sequence token ⟨SOS⟩.

∙ Training maximizes the model likelihood on the entire training set.

18 / 20

Prediction

∙ This is similar to the RNN language model.

Input the image feature vector and the word embedding for ⟨SOS⟩.
Predict the most likely S1, then feed it to the RNN to predict S2,
and so on.

∙ The greedy prediction algorithm usually do not find the most likely
sequence.

∙ Beam search can be used to find higher probability captions

Keep the top few captions generated so far at each time step, find
their best extensions, prune the set of extensions.
At the last time step, output the caption with the largest probability
among all the remaining candidates.

19 / 20

What You Need to Know...

∙ Several RNN applications

Language modelling: character-level RNN
Machine translation: the encoder-decoder architecture
Image captioning

20 / 20

