
Numerical Optimization

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 36

Schedule

A tentative schedule is available on BlackBoard

∙ Week 1-2: machine learning basics

∙ Week 3-4: neural network basics

∙ Week 5-6: deep architectures

∙ Week 7-8: optimization

∙ Week 8-10: improving generalization

∙ Week 10-11: unsupervised learning

∙ Week 12: reinforcement learning

2 / 36

Recall: Learning as Optimization

∙ Many learning problems are directly formulated as an optimization
problem.

e.g. learning a Bernoulli/Gaussian distribution
e.g. OLS, ridge regression
e.g. naive Bayes classifier, logistic regression, SVM

∙ Some of the optimization problems have closed-form solutions, but
many do not.

e.g. logistic regression and SVM do not have closed-form solutions

∙ We often need to use numerical methods to solve optimization
problems in machine learning.

3 / 36

Numerical Optimization

min f (w)

s.t. hi (w) ≤ bi , i = 1, . . . ,m,

∙ w = (w1, . . . ,wd) ∈ Rd : optimization variable.

∙ f : Rd → R: the objective function.

∙ hi : R
d → R: (inequality) constraint functions.

∙ Feasible set: the set of points satisfying all constraints.

4 / 36

Numerical Optimization in Learning

Recall: Learning is...

∙ Collect some data, e.g. coin flips.

∙ Choose a hypothesis class, e.g. Bernoulli distribution.

∙ Choose a loss function, e.g. negative log-likelihood.

∙ Choose an optimization procedure, e.g. set derivative to 0.

∙ Regularization may be used to encode prior knowledge.

The optimization problem is often a numerical optimization problem.

5 / 36

∙ Some examples

OLS min
𝛽

∑︁
i

(w⊤xi + b − yi)
2

Logistic regression min
w

∑︁
i

− ln
ew

⊤
yi
xi∑︀

y ′ e
w⊤
y′xi

Ridge regression
∑︁
i

(w⊤xi − yi)
2 + 𝜆‖w‖22

SVM min
w,w0

1

2
||w||22

s.t. yi (w
⊤xi + w0) ≥ 1, i = 1, . . . , n.

6 / 36

∙ When we train a neural network f (x;w) parametrized by w, we
often need to solve a numerical optimization problem.

∙ For regression, we often solve a problem of the form

min
w

∑︁
i

(f (xi ;w)− yi)
2.

∙ For multiclass classification, we often minimize the cross entropy
loss

min
w

∑︁
i

−y⊤i ln (softmax(f (xi ;w))) ,

where f (xi ;w) is the vector of class scores, and yi is the one-hot
vector for the true class of xi .

7 / 36

Machine Learning != Numerical Optimization

∙ While learning generally involves solving an optimization problem
on the training set, the objective is actually to optimize the
unknown expected risk.

∙ In numerical optimization, we try very hard to obtain an optimizer
of the objective function, because the objective function is usually
exactly what we want to optimize.

∙ In machine learning, we often just try hard enough to obtain a
near-optimal solution of the objective function, because it is usually
just a proxy to what we want to optimize (the expected risk).

8 / 36

Optimization is Hard in General

∙ Many numerical optimization problems are provably hard – there
are no efficient algorithms for finding the optimizers

∙ Classical machine learning algorithms often formulate learning as
“easy” numerical optimization problems.

∙ Deep learning uses very complex functions, which are generally
considered to be “hard” in numerical optimization literature.

9 / 36

“Easy” problems

∙ For quite some time, people thought that only linear optimization
problems (i.e. linear objective, linear constraints) are efficiently
solvable.

∙ Later, people realised that the larger class of convex optimization
problems (i.e. convex objective, conex feasible set) are efficiently
solvable.

∙ In addition, the class of smooth functions often has efficient
algorithms as well.

10 / 36

”Hard” problems

∙ Nonconvex and nonsmooth functions are often considered to be
hard to optimize.

∙ In deep learning, we often need to deal with such functions.

∙ We discuss some difficulties associated with optimizing such
functions and how to deal with them.

11 / 36

Convexity

∙ A function f is convex if

f (𝜆w + (1− 𝜆)w′) ≤ 𝜆f (w) + (1− 𝜆)f (w′)

for all 𝜆 ∈ [0, 1] and w,w′.

Convex Nonconvex

12 / 36

∙ Convexity ⇒ a local minimizer is globally optimal, thus it is good
enough to find a local minimizer.

∙ Nonconvexity ⇒ local minima may not be globally optimal, but
this is hard to detect.

∙ A common method to deal with local minima is to run an
algorithm from different initial values, and then pick the solution
with minimum value.

13 / 36

Smoothness

∙ A function f is smooth if its gradient is Lipschitz, i.e.

|| ∇ f (w)−∇ f (w′)||2 ≤ 𝛽||w −w′||2.

∙ This means f has a quadratic upper bound around any given w

f (w′) ≤ f (w) +∇ f (w)T (w′ −w) +
𝛽

2
||w′ −w||22.

∙ Quadratic functions are easy to minimize, and we can use the
quadratic upper bound to guide the minimization process.

14 / 36

∙ A smooth function need to have continuous gradients.

∙ A commonly used nonsmooth function is the positive part function
(u)+ (the ReLU activation).

∙ We can generalize gradient-based method to sub-gradient method.

g is a subgradient of f at w if f (w′) ≥ f (w) + g⊤(w′ −w).

Example. The subgradients of (u)+ =

⎧⎪⎨⎪⎩
{1} u > 0,

[0, 1] u = 0,

{0}, u < 0.

15 / 36

Saddle Points

∙ A nonconvex function may have saddle points, which have zero
gradient, but are neither minimizers nor maximizers.

∙ These points are not very useful, but for high-dimensional
problems, it is hard to differentiate them from local optima.

16 / 36

Plateaux

∙ Both convex and nonconvex functions may have very flat regions.

∙ Gradients are very small at these regions, thus numerically, points
in these regions really look like critical points.

∙ Plateaux are quite common in deep neural networks using sigmoid
activations.

17 / 36

∙ We need to start with reasonable initial values to avoid plateaux.

∙ Small random values often work well in practice.

∙ For certain networks, there are some guidelines about how to set
the range of these initial values (next lecture).

18 / 36

Your Turn

Which of the following statement is correct? (Multiple choice)

(a) f (x) = tanh(x) is a convex function.

(b) f (x , y) = x2 + y2 is a convex function.

(c) f (x) = 𝜎(x) have two plateux.

19 / 36

Overview of Methods

∙ An optimization method can be exact or stochastic (e.g. full
gradient descent vs. stochastic gradient descent).

Exact methods require a full pass through the dataset in each
iteration is not practical for deep neural networks (dataset is too
large).
Stochastic method are often used instead — this is particularly
useful when the dataset is highly redundant.

20 / 36

∙ Depending on the order of the derivatives used, an optimization
algorithm can be a

zeroth order method: only use function evaluations
first-order method: requires gradient evaluations
second order method: requires Hessian evaluations

∙ 0th order method often requires large number of function
evaluations.

∙ 2nd order method is computationally expensive due to the need to
evaluate Hessians.

21 / 36

Gradient Descent

∙ In gradient descent, we start with some initial w1 ∈ Rd . At step
s ≥ 1, we update ws as follows

ws+1 = ws − 𝜂s ∇ f (ws),

where 𝜂s > 0 is a step size.

∙ Stochastic gradient descent (SGD) uses stochastic gradients in
place of full gradients.

∙ For convex functions, there are learning rates that can be shown to
guarantee convergence.

∙ However, such learning rates are often hard, if not impossible, to
compute.

22 / 36

Momentum

Let’s keep the momentum going!

∙ Gradient descent and SGD can be very slow in practice.

∙ A momentum term is often added to speed up convergence

w2 = w1 − 𝜂g1,

ws+1 = ws

steepest descent⏞ ⏟
−𝜂gs

momentum⏞ ⏟
+𝛼(ws −ws−1), s ≥ 2.

where gs is the full gradient or a stochastic gradient at ws .

∙ The momentum term keeps going along the previous descent
direction.

∙ If a direction has consistent gradients, its velocity will build up.

∙ In general, 𝜂 and 𝛼 can change. Typically 𝛼 = 0.9.

23 / 36

∙ We can also write down ws+1 as

ws+1 = ws − 𝜂(gs + 𝛼gs−1 + . . .+ 𝛼s−1g1).

∙ Thus the momentum method moves along the direction of a
weighted average of gs , . . . , g1, with larger weights for more recent
gradients.

24 / 36

Rolling ball interpretation

∙ We have a ball at a point w.

∙ Objective: minimize the ball’s potential energy U(w) (“loss
function”) by rolling it down a hill.

∙ Assume that for a small time step 𝛿, w changes to w′ when the
ball is rolling downhill.

∙ We show that the update is essentially gradient descent with
momentum.

25 / 36

∙ From the definition of potential energy and Newton’s 2nd law of motion, U(w),
the force F acting on the ball, and the ball’s acceleration a satisfy

F = −∇U

F = ma

}︃
⇒ a = − 1

m
∇U.

∙ Velocity is updated from v to

v ′ = 𝛽v + a𝛿,

where 𝛽 is due to friction.

∙ Position is updated from w to (approximately)

w′ = w +
v + v ′

2
𝛿 = w − 𝛿2

2m
∇U + 𝛽𝛿v ,

which is exactly gradient descent with momentum.

26 / 36

Nesterov’s Method

∙ Nesterov’s method is very similar to the standard momentum
method, but it applies momentum first, followed by gradient
descent.

vs = ws + 𝛼s(ws −ws−1),

ws+1 = vs − 𝜂s ∇ f (vs).

27 / 36

momentum
step

gradient step

actual

momentum

momentum
step

gradient step

actual

Nesterov

28 / 36

∙ Nesterov’s method is a provably optimal first-order method for
convex functions.

∙ In practice, it often works better than standard momentum method.

29 / 36

Example

∙ Minimize f (x , y) = 0.1x2 + y2, starting from (10, 1).

Is f convex or non-convex? What is its minimizer?

∙ Vanilla GD

small learning rate large learning rate
∙ How do learning rate 𝜂 and momentum weight 𝛼 affect the
performance of momentum methods?

30 / 36

∙ Vanilla GD

small learning rate large learning rate
∙ Momentum with small learning rate

small momentum large momentum

31 / 36

∙ Vanilla GD

small learning rate large learning rate
∙ Momentum with large learning rate

small momentum large momentum

32 / 36

∙ Vanilla GD

small learning rate large learning rate
∙ Nesterov with small learning rate

small momentum large momentum

33 / 36

∙ Vanilla GD

small learning rate large learning rate
∙ Nesterov with large learning rate

small momentum large momentum

34 / 36

∙ For all SGD variants, a small learning rate causes slow convergence,
a large learning rate causes jumpy or divergent behavior.

∙ For standard momentum and Nesterov, a suitable momentum
accelerates convergence, but a large momentum causes jumpy or
divergent behavior.

35 / 36

What You Need to Know...

∙ Many learning problems involve numerical optimization

∙ Numerical optimizations are hard in general

∙ Easy problems: convexity and smoothness

∙ Hard problems: saddle points, plateaux
∙ Taxonomy of methods

Exact vs stochastic
Zero-th order, first order, second order

∙ Gradient descent, SGD, and acceleration using momentum or
Nesterov’s method

36 / 36

