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Recall: Avoiding exploding/vanishing
gradients

Good initialization

® Starting from large weights is bad — gradient can easily explode.

® Starting from 0 weights are bad — the hidden neurons will not be
different from each other.

® Small random weights are often used in practice.

Recall: we experimented with different initialization strategies in
Assignment 2...
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Controlling initial activations and
gradients

® What can we do to control the initial activations and gradient?

® Recall: a stochastic gradient g over a random mini-batch S
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g depends both on the training examples and the weights — the
same for activation values.
® Two strategies to control the initial activations and gradients

m (Weight) initialization: careful choice of w
m Input transformation: transform x (e.g. scale features)
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Symmetry is Bad

If two units in the same hidden layer are initialised to have the
same bias and incoming and outgoing weights, they will have the
same gradients.

Using gradient-based training, the two units will learn exactly the
same features.

In particular, initializing all parameters to a constant (like 0) is a
bad choice.

We break symmetry using random initial weights.
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Naive Sampling

e Simply sampling from a distribution like U[—1, 1] (the uniform
distribution on [—1,1]) does not work well.

® Example: distribution of activation and gradient values for neurons
in the same layer for an MLP with tanh activation when random
input examples with 0 mean and unit variance are given
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® Activation values in the deeper layers are close to the saturation
values.
m This becomes worse when depth increases — initial values are at a
plateau (numerically, no gradient, no learning).
® Even when learning happens, it often converge to local minima
with poor generalization performance.

6/ 28



Standard Uniform Initialization

® A better initialization strategy need to take into account that if a
hidden unit has a large fan-in nj, (number of inputs), its weighted
input sum can blow up easily.

® A standard random initialization strategy is to sample the weights
from
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® The standard uniform initialization avoids saturating deeper

neurons
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® However, activation values in the same layer tend to have small
variance for deeper layers, and gradient values show a reverse trend.
® Hard to set a good learning rate

m Large learning rate = weights with large gradients can overshoot.
m Small learning rate = weights with small gradients get stuck.
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Xavier Initialization

e Xavier initialization makes a small change to the sampling interval
to avoid either blowing up the activations or the gradients.
® For weights in a layer with nj, inputs and ngyt outputs, each weight

is sampled from
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Glorot and Bengio, Understanding the difficulty of training deep feedforward neural networks, 2010
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® As compared to standard initialization, Xavier initialization shows
less drastic changes in the activation and gradient values across
layers.

11 /28



Explaining Xavier Initialization

Variance of products
® For two independent random variables W and X, we have
var(WX) = var(X) var(W) + (E X)?var(W) + (E W)?var(X).
e |f W and X also have zero mean, then
var(WX) = var(X) var(W).

® |n addition, if W;'s are i.i.d. copies of W and X;'s are uncorrelated
copies of X, then

var (Z W,-X,-) = nvar(X) var(W).
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Assumptions

® Input variables are i.i.d with mean 0.

e All the weights are independently sampled from a distribution with
mean 0.

e MLP with identity activation (or in a linear region of the activation
function).
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Forward propagation

® For forward propagation through a layer with fan-in n;,, if
X1,..., X, are the input variables, and Y is the output, then

var(Y) = nj, var(W) var(X).

® Thus a layer blows up the activation variance if nj, var(W) > 1,
and decreases it if m, var(W) < 1.

® Good weights: var(W) = 1/n;,.
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Backward propagation

® For backward propagation through a layer with fan-out ngt, the
variance of the input derivatives G, ..., G, and the variance of
the output derivative H are related by

Nout ¥

var(H) = noyt var(W) var(G)

® Thus a layer blows up the previous layer's gradient variance if
nout var(W) > 1, and decreases it if nou var(W) < 1.

® Good weights: var(W) = 1/ngyt.
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Middle ground

® To keep the variance of the activation and gradient unchanged
across layers, take the middle ground between 1/n;, and 1/ngyt,
and set

2

Wy=—= .
Var( ) Nin + Nout

e If W follows a uniform distribution U[—b, b], then var(W) = L

_ 6
thus b= Nin+Nout *

* If W follows a normal distribution N(0,0?), then o = /—2—.

Nin+Nout
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He Initialization

A key assumption is Xavier initialization is that we are working in
the linear region of the activation function.

This is not satisfied if we are using ReLU.

® Using a similar argument as for Xavier initialization, a good
initialization strategy is to sample weights from

This is used in ResNet.

He, Zhang, Ren, and Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, 2015
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Good Initialization

® Diversity
m Different initial weights will allow neurons to evolve into different
features.
e Stability
m The activation variance shouldn't change much across layers.
m The gradient variance shouldn’t change much across layers.
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Input Transformations

Centering inputs

® It usually helps to center each component of the input vector to 0
over the whole training set.

® When using an activation function symmetric around 0, this can
help to keep the activations around 0.

® |t makes training more robust to poor choice of initial weights.

m e.g., even if we only choose positive weights, we won't have a very
large weighted input sum at deep layers.
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Scaling the inputs

® |t usually helps to scale each component of the input vector to
have unit variance over the whole training set.

® This makes the error surface less elongated but more circular, and
thus easier to navigate.
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® We often normalize each component of the input vector to have 0
mean and unit variance over the training set.

® This can make vanilla SGD work very well, even when
momentum /Nesterov SGD converge slowly on the original dataset.
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Case study: OLS on the diabetes dataset
® \We have seen in the tutorial that vanilla gradient descent
converges very slowly on the diabetes dataset.
® Standard momentum has faster convergence rate.
® Normalization makes convergence much faster.

® Fven better: normalization + momentum.
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® x-axis: number of iterations

® y-axis: MSE for the estimated parameters
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Decorrelation
® Sometimes input variables are highly correlated, and simple
normalization does not work very well.

® If we can decorrelate the input components, that can significantly
speed up convergence.

® This is not very practical for high-dimensional data though.
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Good Inputs

® Zero mean per dimension
® Unit variance per dimension

® Uncorrelated dimensions
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(b)

(c)

Your Turn

Which of the following statement is correct? (Multiple choice)

A desirable property of an initialization strategy is that the variance
of the activation values do not converge to 0 at deeper layers.

Any initialization strategy that initializes weights by sampling from
an interval of the form U[—\/%, \/‘;7] where ¢ >0 is a
user-specified constant, is guarantteed to keep the gradient
variance constant across layers.

Input normalization can potentially make learning a model
significantly easier.
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What You Need to Know...

® Good initialization
m Diversity and stability are important
m Xavier initialization, He initialization
® Good inputs

m “Easy data”: each dimension has zero mean and unit variance, and
uncorrelated with other dimension
m Making data easy: centering, unit variance, decorrelation.
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