
Initialization and Input Transformation

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 28

Recall: Avoiding exploding/vanishing

gradients

Good initialization

∙ Starting from large weights is bad — gradient can easily explode.

∙ Starting from 0 weights are bad — the hidden neurons will not be
different from each other.

∙ Small random weights are often used in practice.

Recall: we experimented with different initialization strategies in
Assignment 2...

2 / 28

Controlling initial activations and

gradients

∙ What can we do to control the initial activations and gradient?

∙ Recall: a stochastic gradient g over a random mini-batch S

g =
1

|S |
∑︁

(x,y)∈S

∇w L((x, y),w)

g depends both on the training examples and the weights – the
same for activation values.

∙ Two strategies to control the initial activations and gradients

(Weight) initialization: careful choice of w
Input transformation: transform x (e.g. scale features)

3 / 28

Symmetry is Bad

∙ If two units in the same hidden layer are initialised to have the
same bias and incoming and outgoing weights, they will have the
same gradients.

∙ Using gradient-based training, the two units will learn exactly the
same features.

∙ In particular, initializing all parameters to a constant (like 0) is a
bad choice.

∙ We break symmetry using random initial weights.

4 / 28

Naive Sampling

∙ Simply sampling from a distribution like U[−1, 1] (the uniform
distribution on [−1, 1]) does not work well.

∙ Example: distribution of activation and gradient values for neurons
in the same layer for an MLP with tanh activation when random
input examples with 0 mean and unit variance are given

(a) activation (b) gradient

5 / 28

∙ Activation values in the deeper layers are close to the saturation
values.

This becomes worse when depth increases — initial values are at a
plateau (numerically, no gradient, no learning).

∙ Even when learning happens, it often converge to local minima
with poor generalization performance.

6 / 28

Standard Uniform Initialization

∙ A better initialization strategy need to take into account that if a
hidden unit has a large fan-in nin (number of inputs), its weighted
input sum can blow up easily.

∙ A standard random initialization strategy is to sample the weights
from

U

(︂
− 1
√
nin

,
1

√
nin

)︂
.

7 / 28

∙ The standard uniform initialization avoids saturating deeper
neurons

(a) activation (b) gradient

8 / 28

∙ However, activation values in the same layer tend to have small
variance for deeper layers, and gradient values show a reverse trend.

∙ Hard to set a good learning rate

Large learning rate ⇒ weights with large gradients can overshoot.
Small learning rate ⇒ weights with small gradients get stuck.

9 / 28

Xavier Initialization

∙ Xavier initialization makes a small change to the sampling interval
to avoid either blowing up the activations or the gradients.

∙ For weights in a layer with nin inputs and nout outputs, each weight
is sampled from

U

(︂
−
√︂

6

nin + nout
,

√︂
6

nin + nout

)︂
.

(a) activation (b) gradient
Glorot and Bengio, Understanding the difficulty of training deep feedforward neural networks, 2010

10 / 28

∙ As compared to standard initialization, Xavier initialization shows
less drastic changes in the activation and gradient values across
layers.

11 / 28

Explaining Xavier Initialization

Variance of products

∙ For two independent random variables W and X , we have

var(WX) = var(X) var(W) + (EX)2 var(W) + (EW)2 var(X).

∙ If W and X also have zero mean, then

var(WX) = var(X) var(W).

∙ In addition, if Wi ’s are i.i.d. copies of W and Xi ’s are uncorrelated
copies of X , then

var

(︃
n∑︁

i=1

WiXi

)︃
= n var(X) var(W).

12 / 28

Assumptions

∙ Input variables are i.i.d with mean 0.

∙ All the weights are independently sampled from a distribution with
mean 0.

∙ MLP with identity activation (or in a linear region of the activation
function).

13 / 28

Forward propagation

∙ For forward propagation through a layer with fan-in nin, if
X1, . . . ,Xn are the input variables, and Y is the output, then

var(Y) = nin var(W) var(X).

∙ Thus a layer blows up the activation variance if nin var(W) > 1,
and decreases it if nin var(W) < 1.

∙ Good weights: var(W) = 1/nin.

14 / 28

Backward propagation

∙ For backward propagation through a layer with fan-out nout, the
variance of the input derivatives G1, . . . ,Gnout , and the variance of
the output derivative H are related by

var(H) = nout var(W) var(G)

∙ Thus a layer blows up the previous layer’s gradient variance if
nout var(W) > 1, and decreases it if nout var(W) < 1.

∙ Good weights: var(W) = 1/nout.

15 / 28

Middle ground

∙ To keep the variance of the activation and gradient unchanged
across layers, take the middle ground between 1/nin and 1/nout,
and set

var(W) =
2

nin + nout
.

∙ If W follows a uniform distribution U[−b, b], then var(W) = b2

3 ,

thus b =
√︁

6
nin+nout

.

∙ If W follows a normal distribution N(0, 𝜎2), then 𝜎 =
√︁

2
nin+nout

.

16 / 28

He Initialization

∙ A key assumption is Xavier initialization is that we are working in
the linear region of the activation function.

∙ This is not satisfied if we are using ReLU.

∙ Using a similar argument as for Xavier initialization, a good
initialization strategy is to sample weights from

U

(︂
−
√︂

6

nin
,

√︂
6

nin

)︂
.

∙ This is used in ResNet.

He, Zhang, Ren, and Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, 2015

17 / 28

(a) activation (b) gradient

18 / 28

Good Initialization

∙ Diversity

Different initial weights will allow neurons to evolve into different
features.

∙ Stability

The activation variance shouldn’t change much across layers.
The gradient variance shouldn’t change much across layers.

19 / 28

Input Transformations

Centering inputs

∙ It usually helps to center each component of the input vector to 0
over the whole training set.

∙ When using an activation function symmetric around 0, this can
help to keep the activations around 0.

∙ It makes training more robust to poor choice of initial weights.

e.g., even if we only choose positive weights, we won’t have a very
large weighted input sum at deep layers.

20 / 28

Scaling the inputs

∙ It usually helps to scale each component of the input vector to
have unit variance over the whole training set.

∙ This makes the error surface less elongated but more circular, and
thus easier to navigate.

21 / 28

∙ We often normalize each component of the input vector to have 0
mean and unit variance over the training set.

∙ This can make vanilla SGD work very well, even when
momentum/Nesterov SGD converge slowly on the original dataset.

22 / 28

Case study: OLS on the diabetes dataset

∙ We have seen in the tutorial that vanilla gradient descent
converges very slowly on the diabetes dataset.

∙ Standard momentum has faster convergence rate.

∙ Normalization makes convergence much faster.

∙ Even better: normalization + momentum.

23 / 28

∙ x-axis: number of iterations

∙ y -axis: MSE for the estimated parameters

24 / 28

Decorrelation

∙ Sometimes input variables are highly correlated, and simple
normalization does not work very well.

∙ If we can decorrelate the input components, that can significantly
speed up convergence.

∙ This is not very practical for high-dimensional data though.

25 / 28

Good Inputs

∙ Zero mean per dimension

∙ Unit variance per dimension

∙ Uncorrelated dimensions

26 / 28

Your Turn

Which of the following statement is correct? (Multiple choice)

(a) A desirable property of an initialization strategy is that the variance
of the activation values do not converge to 0 at deeper layers.

(b) Any initialization strategy that initializes weights by sampling from
an interval of the form U[− c√

nin
, c√

nin
], where c > 0 is a

user-specified constant, is guarantteed to keep the gradient
variance constant across layers.

(c) Input normalization can potentially make learning a model
significantly easier.

27 / 28

What You Need to Know...

∙ Good initialization

Diversity and stability are important
Xavier initialization, He initialization

∙ Good inputs

“Easy data”: each dimension has zero mean and unit variance, and
uncorrelated with other dimension
Making data easy: centering, unit variance, decorrelation.

28 / 28

