
Normalization Tricks

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 20

Recall: Normalized Input is Good

OLS on the diabetes dataset

For deep neural nets, can we keep inputs to non-input layers normalized?

2 / 20

Internal Covariate Shift

∙ Consider a network computing F2(F1(x,w1),w2).

∙ Let vi = F1(xi ,w1). Then a gradient update step has the form

w1 ← w1 −
𝜂

n

n∑︁
i=1

𝜕F2(F1(xi ,w1),w2)

𝜕w1
,

w2 ← w2 −
𝜂

n

n∑︁
i=1

𝜕F2(vi ,w2)

𝜕w2
.

∙ After we normalize x, it remain normalized during training.

∙ The distribution of v = F1(x,w1) changes during training as w1

will be updated.

3 / 20

∙ In general, the distribution of each layer’s inputs changes during
training, and they are not normalized — this is known as internal
covariate shift.

covariate is just a different name for an input variable

∙ Normalized input data != normalized input for hidden neurons.

4 / 20

Weight-dependent Normalization

∙ For hidden neurons, we calculate normalization parameters that
depend on current weights.

∙ Specifically, if a neuron takes x as an input, we normalize x to

x̂ =
x − 𝜇

𝜎
,

where 𝜇 and 𝜎 are calculated based on both the dataset and
current weights.

∙ There are various ways to implement this idea.

5 / 20

Naive Idea

∙ At the beginning of each epoch in SGD, for each input x of a
neuron, we first compute its mean 𝜇 and variance 𝜎2 over the
entire training set.

∙ During the epoch, instead of using the input x , the neuron receives
the normalized input

x̂ =
x − 𝜇

𝜎
.

∙ Both 𝜇 and 𝜎 depend on the original network parameters and are
involved in gradient computation.

6 / 20

Two problems

∙ (Loss of representation power) The function represented by the
network is different from that represented by the original network,
and it may make a layer less capable of representing complex
functions.

∙ (High computational cost) It is computationally impractical,
because 𝜇 and 𝜎 are used in gradient computation, and they need
to be represented by an extremely large computational graph.

7 / 20

Batch Normalization (BN)

∙ It is an improved version of the naive idea.

∙ It improves gradient flow by reducing dependence of gradients on
the scale and initial values of parameters, thus allowing larger
learning rate and faster convergence.

∙ It makes training with saturating units like sigmoid/tanh easier.

Ioffe and Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015

8 / 20

Two improvements
∙ (Dealing with computational cost) Compute mean and variance
using the mini-batch

This makes it possible to efficiently compute gradients.

∙ (Maintaining representation power) Instead of using the normalized
input x̂ as the input, use a linearly transformed x̂

y = 𝛾x̂ + 𝛽.

𝛾 and 𝛽 are parameters to be learned.
With 𝛾 = 𝜎 and 𝛽 = 𝜇, we recover the identity mapping.

9 / 20

∙ These two operations can be represented as an additional layer in
the network (the batch normalization layer).

n
or
m
al
iz
e

d
en
or
m
al
iz
e

batch normalized
x x̂ y f (y)

original computation
x f (x)

10 / 20

Batch normalization transform

11 / 20

Batch normalization gradients

12 / 20

Implicit regularization

∙ During training, the 𝜇 and 𝜎 values for a BN layer are computed
using examples for the current mini-batch.

∙ The network’s predicted output on an example thus depends on the
entire mini-batch, not just the example alone — this is different
from the usual neural nets that we have seen so far.

∙ BN thus acts as a form of regularization as a consequence of
producing nondeterministic outputs for a given example during
training.

13 / 20

Using BN during testing

∙ At test time the BN layer behaves differently.

∙ 𝜇 and 𝜎2 are not computed based on current test mini-batch, but
are computed using the estimates from multiple training
mini-batches.

∙ Overall, during test time, the batch normalization layer takes in x
and outputs

y =
𝛾√

𝜎2 + 𝜖
x +

(︂
𝛽 − 𝛾𝜇√

𝜎2 + 𝜖

)︂
.

14 / 20

Where to apply BN

∙ Usually inserted after fully connected or convolutional layers, and
before nonlinearity.

∙ Specifically, if a layer computes z = g(Wu + b) with g being the
activation function,

recommended: z = g(BN(Wu)),

not recommended: z = g(WBN(u) + b).

Note that BN(Wu + b) = BN(Wu).

∙ Wu + b is more likely to be a symmetric, non-sparse distribution,
thus BN(Wu) is more likely to be normally distributed.

15 / 20

original two-layer network

net = nn.Sequential(nn.Linear(100, 50), nn.ReLU(),

nn.Linear(50, 10), nn.Sigmoid())

recommended: batch normalization applied after linearity

net = nn.Sequential(nn.Linear(100, 50), nn.ReLU(),

nn.Linear(50, 10), nn.BatchNorm1d(10), nn.Sigmoid())

not recommended: batch normalization applied before linearity

net = nn.Sequential(nn.Linear(100, 50), nn.ReLU(),

nn.BatchNorm1d(50), nn.Linear(50, 10), nn.Sigmoid())

16 / 20

Your Turn

Which of the following statement is correct? (Multiple choice)

(a) When we normalize the input data, the inputs to all hidden
neurons will be normalized too.

(b) A neural net with BN layers can produce different predictions on
the same training example during testing.

(c) A BN layer first normalizes the input, and then applies a linear
transformation to the normalized input.

17 / 20

Layer Normalization

∙ In batch normalization, the normalization parameters are computed
for individual neurons over different examples.

∙ In layer normalization, the normalization parameters are computed
for all neurons in the same layer.
∙ Specifically, consider the l-th layer of a network, which has m

neurons, with xl ,1:m as their their weighted input sums.

(compute parameters) 𝜇l =
1

m

m∑︁
i=1

xl,i , 𝜎l =

⎯⎸⎸⎷ 1

m

m∑︁
i=1

(xli − 𝜇l)2,

(normalization) x̂li =
xli − 𝜇l

𝜎l
, for each i = 1, . . . ,m,

(denormalization) yli = 𝛾li x̂li + 𝛽li , for each i = 1, . . . ,m.

Ba, Kiros, and Hinton, Layer normalization, 2016

18 / 20

Weight Normalization

∙ Weight normalization reparametrize a weight vector as the product
of a magnitude and a directional vector.
∙ Specifically, x = w⊤u+ b is reparametrized as

x = 𝛾
w⊤

‖w‖
u+ b,

where 𝛾 is an additional learnable parameter representing the
magnitude of the weight vector.
∙ Weight normalization is also a special case of the generic
weight-dependent normalization scheme.
∙ Specifically, if x = w⊤u+ b, then the following normalization

procedure computes 𝛾 w⊤

‖w‖u+ b,

(compute parameters) 𝜇 = b 𝜎 = ||w||2,

(normalization) x̂ =
x − 𝜇

𝜎
,

(denormalization) y = 𝛾x̂ + b.

Salimans and Kingma, Weight normalization: A simple reparameterization to accelerate training of deep neural networks,
2016 19 / 20

What You Need to Know

∙ Weight-dependent normalization tricks for non-input layers

normalization with weight-dependent parameters, followed by
denormalization
often accelerate training process

∙ Batch normalization

neuron-specific and mini-batch-specific normalization parameters
acts as an implicit regularizer during training

∙ Layer normalization

∙ Weight normalization

20 / 20

