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Recall: Normalized Input is Good

OLS on the diabetes dataset
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For deep neural nets, can we keep inputs to non-input layers normalized?
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Internal Covariate Shift

Consider a network computing Fo(F1(x,w1), w>).
Let v; = F1(xj,w1). Then a gradient update step has the form
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After we normalize x, it remain normalized during training.

The distribution of v = F1(x,w;) changes during training as wj
will be updated.
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® In general, the distribution of each layer’s inputs changes during
training, and they are not normalized — this is known as internal

covariate shift.
covariate is just a different name for an input variable

® Normalized input data != normalized input for hidden neurons.
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Weight-dependent Normalization

® For hidden neurons, we calculate normalization parameters that
depend on current weights.
e Specifically, if a neuron takes x as an input, we normalize x to
X—H

X = )
o

where 1 and ¢ are calculated based on both the dataset and
current weights.
® There are various ways to implement this idea.
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Naive Idea

® At the beginning of each epoch in SGD, for each input x of a
neuron, we first compute its mean z and variance o2 over the
entire training set.

® During the epoch, instead of using the input x, the neuron receives
the normalized input

X =
—.

X =

® Both u and o depend on the original network parameters and are
involved in gradient computation.
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Two problems

¢ (Loss of representation power) The function represented by the
network is different from that represented by the original network,
and it may make a layer less capable of representing complex
functions.

® (High computational cost) It is computationally impractical,
because i and o are used in gradient computation, and they need
to be represented by an extremely large computational graph.
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Batch Normalization (BN)

® |t is an improved version of the naive idea.

® |t improves gradient flow by reducing dependence of gradients on
the scale and initial values of parameters, thus allowing larger
learning rate and faster convergence.

® |t makes training with saturating units like sigmoid/tanh easier.

loffe and Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015
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Two improvements

¢ (Dealing with computational cost) Compute mean and variance
using the mini-batch

m This makes it possible to efficiently compute gradients.

¢ (Maintaining representation power) Instead of using the normalized
input X as the input, use a linearly transformed %

y =79X+p.

m v and § are parameters to be learned.
m With v = o and 8 = pu, we recover the identity mapping.
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These two operations can be represented as an additional layer in
the network (the batch normalization layer).

X f(x)

original computation

normalize
denormalize

f(y) .
E— batch normalized
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Input: Values of = over a mini-batch: B = {z, _,,};
Parameters to be learned: -y, 3
Output: {y; = BN, 5(x;)}
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Batch normalization transform
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Batch normalization gradients
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Implicit regularization

® During training, the u and o values for a BN layer are computed
using examples for the current mini-batch.

® The network'’s predicted output on an example thus depends on the
entire mini-batch, not just the example alone — this is different
from the usual neural nets that we have seen so far.

® BN thus acts as a form of regularization as a consequence of
producing nondeterministic outputs for a given example during
training.
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Using BN during testing
® At test time the BN layer behaves differently.

® 1 and o2 are not computed based on current test mini-batch, but
are computed using the estimates from multiple training
mini-batches.

e Qverall, during test time, the batch normalization layer takes in x
and outputs

y:7X+<ﬁ_W>,
Vo2 +e Vol +e
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Where to apply BN

® Usually inserted after fully connected or convolutional layers, and
before nonlinearity.

e Specifically, if a layer computes z = g(Wu + b) with g being the
activation function,

recommended: z = g(BN(Wu)),
not recommended: z = g(WBN(u) + b).

Note that BN(Wu + b) = BN(Wa).

® Wu + b is more likely to be a symmetric, non-sparse distribution,

thus BN(Wau) is more likely to be normally distributed.
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# original two-layer network
net = nn.Sequential(nn.Linear (100, 50), nn.ReLU(),
nn.Linear (50, 10), nn.Sigmoid())

# recommended: batch normalization applied after linearity
net = nn.Sequential(nn.Linear (100, 50), nn.ReLU(),
nn.Linear (50, 10), nn.BatchNorm1d(10), nn.Sigmoid())

# not recommended: batch normalization applied before linearity
net = nn.Sequential(nn.Linear(100, 50), nn.ReLUQ),
nn.BatchNorm1d(50), nn.Linear(50, 10), nn.Sigmoid())
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Your Turn

Which of the following statement is correct? (Multiple choice)

(a) When we normalize the input data, the inputs to all hidden
neurons will be normalized too.

(b) A neural net with BN layers can produce different predictions on
the same training example during testing.

(c) A BN layer first normalizes the input, and then applies a linear
transformation to the normalized input.

17 /20



Layer Normalization

® |n batch normalization, the normalization parameters are computed
for individual neurons over different examples.
® |n layer normalization, the normalization parameters are computed

for all neurons in the same layer.

e Specifically, consider the /-th layer of a network, which has m
neurons, with x; 1., as their their weighted input sums.

1
(compute parameters) = - X1.iy
i=1
. N Xji — b .
(normalization) &% = = Lt , foreachi=1,..., m,
g
(denormalization) yi = YViXi + Bii, foreachi=1,...,m.

Ba, Kiros, and Hinton, Layer normalization, 2016
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Weight Normalization

® Weight normalization reparametrize a weight vector as the product
of a magnitude and a directional vector.
® Specifically, x = w ' u + b is reparametrized as
T
X = w ——u+ b,
Tiw]
where 7y is an additional learnable parameter representing the
magnitude of the weight vector.
® Weight normalization is also a special case of the generic
weight-dependent normalization scheme.
e Specifically, if x = w u + b, then the following normalization
procedure computes ’yﬁu + b,

(compute parameters) u=>b o =||wl||2,
(normalization) g=2"H
o
(denormalization) y=~X+b.

Salimans and Kingma, Weight normalization: A simple reparameterization to accelerate training of deep neural networl
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What You Need to Know

Weight-dependent normalization tricks for non-input layers

m normalization with weight-dependent parameters, followed by
denormalization
m often accelerate training process

Batch normalization

m neuron-specific and mini-batch-specific normalization parameters
m acts as an implicit regularizer during training

Layer normalization

Weight normalization
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