Adaptive Learning Rates

Nan Ye

School of Mathematics and Physics
The University of Queensland

Local Geometry and Adaptivity

- Local geometry of the error surface is important for choosing good learning rate
- Flat error surface \Rightarrow a large learning rate is desirable.
- Steep error surface \Rightarrow a small learning rate is essential.
- Near a minimizer \Rightarrow small learning rate to avoid oscillatory behavior.
- Fixed learning rates (such as constant learning rates, or $\frac{1}{t}$) are not able to adapt to the local geometry of the error surface.
- We want to exploit local geometry to adaptively set the learning rates.

Per-dimension adaptivity

- We have seen in earlier lectures that in a deep net, the gradients at different layers often differ significantly.
- Good initialization and input transformation help, but do not solve the problem completely.
- If we can set per-dimension adaptive learning rates, it can help us to speed up learning for layers with small gradients, and avoid overshooting for layers with large gradients.

Learning Rate Annealing

- Reduce learning rate when the error plateaus.
- e.g. reduce from 0.1 to 0.01 .
- Often use the error on a validation set
- Helpful when the algorithm is oscillating around a minimizer due to large learning rate.

Newton's Method

- Newton's method provides a way to better take local geometry into account than vanilla gradient descent.
- Newton's method updates current iterate w to

$$
\mathbf{w}^{\prime}=\mathbf{w}-H^{-1} g
$$

where $H=\nabla^{2} f(\mathbf{w})$ and g are the Hessian and gradient of f at \mathbf{w}.

- This is derived by choosing d to minimize the second order Taylor series approximation

$$
f(\mathbf{w}+d) \approx f(\mathbf{w})+d^{\top} \nabla f(\mathbf{w})+\frac{1}{2} d^{\top} H d .
$$

- Newton's method is computationally expensive.

Diagonal approximation

- The diagonal $\left(h_{1}, \ldots, h_{m}\right)$ of H can be efficiently computed.
- We approximate Newton's method

$$
w_{i}=w_{i}-\frac{1}{h_{i}+\epsilon} g_{i}
$$

where $\epsilon>0$ is a constant.

AdaGrad

- For each weight w, keep the sum of squared derivative.
- The sum $v^{(t)}$ at iteration t is recursively computed as

$$
v^{(t)}=v^{(t-1)}+\left(g^{(t)}\right)^{2}
$$

where $g^{(t)}$ is w 's derivative at iteration t.

- At iteration t, current weight $w^{(t)}$ is updated to

$$
w^{(t+1)}=w^{(t)}-\frac{\eta}{\sqrt{v^{(t)}+\epsilon}} g^{(t)}
$$

where $\eta>0$ is a global learning rate shared by all weights.

- AdaGrad evens out progress for all weights.
- Weights with small gradients move faster.
- Weights with large gradients move slower.
- However, the gradients accumulate, and after a while no progress can be made.
- In addition, the method can be sensitive to the initial values.
- Large initial gradients can make learning too slow.

RMSProp

- RMSProp keeps a moving average of the squared derivative, instead of the sum.
- The moving average $v^{(t)}$ at iteration t is recursively computed as

$$
v^{(t)}=\rho v^{(t-1)}+(1-\rho)\left(g^{(t)}\right)^{2}
$$

- At iteration t, current weight $w^{(t)}$ is updated to

$$
w^{(t+1)}=w^{(t)}-\frac{\eta}{\sqrt{v^{(t)}+\epsilon}} g^{(t)}
$$

where $\eta>0$ is a global learning rate shared by all weights.

- ρ is typically close to 1 .
- RMSProp evens out progress for all weights as AdaGrad.
- Additionally, it is less sensitive to the initial values, and can keep on making progress after many iterations.

AdaDelta

- An interesting observation
- GD: unit of change \propto unit of $g \propto \frac{\partial f}{\partial w} \propto \frac{1}{\text { unit of } w}$.
- Newton's method: unit of change \propto unit of $H^{-1} g \propto \frac{\partial f}{\partial w} / \frac{\partial^{2} f}{\partial w^{2}}$ \propto unit of w.
- AdaDelta is an improvement of RMSProp by adding a scaling factor to each dimension so that the updates have the right units.
- AdaDelta computes the moving average $v^{(t)}$ of the squared derivative as in RMSProp.
- It additionally computes a moving average for the squared updates

$$
s^{(t+1)}=\rho s^{(t)}+(1-\rho)\left(w^{(t+1)}-w^{(t)}\right)^{2}
$$

- At iteration t, current weight $w^{(t)}$ is updated to

$$
w^{(t+1)}=w^{(t)}-\frac{\sqrt{s^{(t)}+\epsilon}}{\sqrt{v^{(t)}+\epsilon}} g^{(t)}
$$

- Note that unit of the update is the same as that of w.
- AdaDelta overcomes the sensitivity to the hyperparameter selection in methods like RMSProp.
- AdaDelta appears to be robust to noisy gradient information, and is insensitive to the choice of the hyperparameter ϵ.

Adam

- Adam combines RMSProp with standard momentum.
- For each weight w, it computes (biased) 1 st moment $m^{(t)}$ and 2 nd moment $v^{(t)}$ at iteration t as follows

$$
\begin{aligned}
m^{(t)} & =\rho_{1} m^{(t-1)}+\left(1-\rho_{1}\right) g^{(t)} \\
v^{(t)} & =\rho_{2} m^{(t-1)}+\left(1-\rho_{2}\right)\left(g^{(t)}\right)^{2}
\end{aligned}
$$

- The total weights of the derivatives are not 1 , and a bias correction is applied

$$
\begin{aligned}
\hat{m}^{(t)} & =m^{(t)} /\left(1-\rho_{1}^{t}\right), \\
\hat{v}^{(t)} & =m^{(t)} /\left(1-\rho_{2}^{t}\right) .
\end{aligned}
$$

- At iteration t, current weight $w^{(t)}$ is updated to

$$
w^{(t+1)}=w^{(t)}-\frac{\eta}{\sqrt{\hat{v}^{(t)}+\epsilon}} \hat{m}^{(t)}
$$

Visualizing Optimization Algorithms

https://imgur.com/a/Hqolp\#2dKCQHh

Your Turn

Which of the following statement is correct? (Multiple choice)
(a) Having a learning rate per dimension for gradient-based algorithm can possibly lead to better convergence behavior.
(b) AdaGrad, RMSProp and AdaDelta can all be seen as gradient-based methods that adaptively define learning rates for each dimension.
(c) Adam combines RMSProp with standard momentum.

Numerical Optimization for Machine Learning

- The error surface is often nonconvex and nonsmooth (local minima, saddle points, plateaus...)
- Some commonly used techniques
- Acceleration using a momentum term (standard momentum, Nesterov)
- Good initialization (Xavier, He)
- Normalization tricks (input normalization, weight-dependent normalization for non-input layers)
- Adaptive learning rates (Adagrad, RMSProp, AdaDelta, Adam)

Debugging Your Neural Net

- Architecture has enough but not too much capacity?
- Input normalized?
- Good initialization?
- Suitable loss function?
- Suitable optimization algorithm with suitable hyperparameters?
- Trained for long enough?

