
Adaptive Learning Rates

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 20



Local Geometry and Adaptivity

∙ Local geometry of the error surface is important for choosing good
learning rate

Flat error surface ⇒ a large learning rate is desirable.
Steep error surface ⇒ a small learning rate is essential.
Near a minimizer ⇒ small learning rate to avoid oscillatory behavior.

∙ Fixed learning rates (such as constant learning rates, or 1
t ) are not

able to adapt to the local geometry of the error surface.

∙ We want to exploit local geometry to adaptively set the learning
rates.

2 / 20



Per-dimension adaptivity

∙ We have seen in earlier lectures that in a deep net, the gradients at
different layers often differ significantly.

∙ Good initialization and input transformation help, but do not solve
the problem completely.

∙ If we can set per-dimension adaptive learning rates, it can help us
to speed up learning for layers with small gradients, and avoid
overshooting for layers with large gradients.

3 / 20



Learning Rate Annealing

∙ Reduce learning rate when the error plateaus.

e.g. reduce from 0.1 to 0.01.
Often use the error on a validation set

∙ Helpful when the algorithm is oscillating around a minimizer due to
large learning rate.

4 / 20



Newton’s Method

∙ Newton’s method provides a way to better take local geometry into
account than vanilla gradient descent.

∙ Newton’s method updates current iterate w to

w′ = w − H−1g ,

where H = ∇2 f (w) and g are the Hessian and gradient of f at w.

∙ This is derived by choosing d to minimize the second order Taylor
series approximation

f (w + d) ≈ f (w) + d⊤∇ f (w) +
1

2
d⊤Hd .

∙ Newton’s method is computationally expensive.

5 / 20



Diagonal approximation

∙ The diagonal (h1, . . . , hm) of H can be efficiently computed.

∙ We approximate Newton’s method

wi = wi −
1

hi + 𝜖
gi ,

where 𝜖 > 0 is a constant.

6 / 20



AdaGrad

∙ For each weight w , keep the sum of squared derivative.

∙ The sum v (t) at iteration t is recursively computed as

v (t) = v (t−1) + (g (t))2,

where g (t) is w ’s derivative at iteration t.

∙ At iteration t, current weight w (t) is updated to

w (t+1) = w (t) − 𝜂√︀
v (t) + 𝜖

g (t),

where 𝜂 > 0 is a global learning rate shared by all weights.

Duchi, Hazan, and Singer, Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, 2010

7 / 20



∙ AdaGrad evens out progress for all weights.

Weights with small gradients move faster.
Weights with large gradients move slower.

∙ However, the gradients accumulate, and after a while no progress
can be made.

∙ In addition, the method can be sensitive to the initial values.

Large initial gradients can make learning too slow.

8 / 20



RMSProp

∙ RMSProp keeps a moving average of the squared derivative,
instead of the sum.

∙ The moving average v (t) at iteration t is recursively computed as

v (t) = 𝜌v (t−1) + (1− 𝜌)(g (t))2.

∙ At iteration t, current weight w (t) is updated to

w (t+1) = w (t) − 𝜂√︀
v (t) + 𝜖

g (t),

where 𝜂 > 0 is a global learning rate shared by all weights.

∙ 𝜌 is typically close to 1.

9 / 20



∙ RMSProp evens out progress for all weights as AdaGrad.

∙ Additionally, it is less sensitive to the initial values, and can keep
on making progress after many iterations.

10 / 20



AdaDelta

∙ An interesting observation

GD: unit of change ∝ unit of g ∝ 𝜕f
𝜕w ∝ 1

unit of w .

Newton’s method: unit of change ∝ unit of H−1g ∝ 𝜕f
𝜕w /

𝜕2f
𝜕w2

∝ unit of w .

∙ AdaDelta is an improvement of RMSProp by adding a scaling
factor to each dimension so that the updates have the right units.

11 / 20



∙ AdaDelta computes the moving average v (t) of the squared
derivative as in RMSProp.

∙ It additionally computes a moving average for the squared updates

s(t+1) = 𝜌s(t) + (1− 𝜌)(w (t+1) − w (t))2.

∙ At iteration t, current weight w (t) is updated to

w (t+1) = w (t) −
√︀

s(t) + 𝜖√︀
v (t) + 𝜖

g (t).

∙ Note that unit of the update is the same as that of w .

Zeiler, ADADELTA: an adaptive learning rate method, 2012

12 / 20



∙ AdaDelta overcomes the sensitivity to the hyperparameter selection
in methods like RMSProp.

∙ AdaDelta appears to be robust to noisy gradient information, and
is insensitive to the choice of the hyperparameter 𝜖.

13 / 20



Adam

∙ Adam combines RMSProp with standard momentum.
∙ For each weight w , it computes (biased) 1st moment m(t) and 2nd
moment v (t) at iteration t as follows

m(t) = 𝜌1m
(t−1) + (1− 𝜌1)g

(t),

v (t) = 𝜌2m
(t−1) + (1− 𝜌2)(g

(t))2.

∙ The total weights of the derivatives are not 1, and a bias correction
is applied

m̂(t) = m(t)/(1− 𝜌t1),

v̂ (t) = m(t)/(1− 𝜌t2).

∙ At iteration t, current weight w (t) is updated to

w (t+1) = w (t) − 𝜂√︀
v̂ (t) + 𝜖

m̂(t).

Kingma and Ba, Adam: A method for stochastic optimization, 2015

14 / 20



Visualizing Optimization Algorithms

https://imgur.com/a/Hqolp#2dKCQHh

15 / 20

https://imgur.com/a/Hqolp#2dKCQHh


16 / 20



17 / 20



Your Turn

Which of the following statement is correct? (Multiple choice)

(a) Having a learning rate per dimension for gradient-based algorithm
can possibly lead to better convergence behavior.

(b) AdaGrad, RMSProp and AdaDelta can all be seen as
gradient-based methods that adaptively define learning rates for
each dimension.

(c) Adam combines RMSProp with standard momentum.

18 / 20



Numerical Optimization for Machine

Learning

∙ The error surface is often nonconvex and nonsmooth (local
minima, saddle points, plateaus...)

∙ Some commonly used techniques

Acceleration using a momentum term (standard momentum,
Nesterov)
Good initialization (Xavier, He)
Normalization tricks (input normalization, weight-dependent
normalization for non-input layers)
Adaptive learning rates (Adagrad, RMSProp, AdaDelta, Adam)

19 / 20



Debugging Your Neural Net

∙ Architecture has enough but not too much capacity?

∙ Input normalized?

∙ Good initialization?

∙ Suitable loss function?

∙ Suitable optimization algorithm with suitable hyperparameters?

∙ Trained for long enough?

20 / 20


	2.Plus: 
	2.Reset: 
	2.Minus: 
	2.EndRight: 
	2.StepRight: 
	2.PlayPauseRight: 
	2.PlayRight: 
	2.PauseRight: 
	2.PlayPauseLeft: 
	2.PlayLeft: 
	2.PauseLeft: 
	2.StepLeft: 
	2.EndLeft: 
	anm2: 
	2.174: 
	2.173: 
	2.172: 
	2.171: 
	2.170: 
	2.169: 
	2.168: 
	2.167: 
	2.166: 
	2.165: 
	2.164: 
	2.163: 
	2.162: 
	2.161: 
	2.160: 
	2.159: 
	2.158: 
	2.157: 
	2.156: 
	2.155: 
	2.154: 
	2.153: 
	2.152: 
	2.151: 
	2.150: 
	2.149: 
	2.148: 
	2.147: 
	2.146: 
	2.145: 
	2.144: 
	2.143: 
	2.142: 
	2.141: 
	2.140: 
	2.139: 
	2.138: 
	2.137: 
	2.136: 
	2.135: 
	2.134: 
	2.133: 
	2.132: 
	2.131: 
	2.130: 
	2.129: 
	2.128: 
	2.127: 
	2.126: 
	2.125: 
	2.124: 
	2.123: 
	2.122: 
	2.121: 
	2.120: 
	2.119: 
	2.118: 
	2.117: 
	2.116: 
	2.115: 
	2.114: 
	2.113: 
	2.112: 
	2.111: 
	2.110: 
	2.109: 
	2.108: 
	2.107: 
	2.106: 
	2.105: 
	2.104: 
	2.103: 
	2.102: 
	2.101: 
	2.100: 
	2.99: 
	2.98: 
	2.97: 
	2.96: 
	2.95: 
	2.94: 
	2.93: 
	2.92: 
	2.91: 
	2.90: 
	2.89: 
	2.88: 
	2.87: 
	2.86: 
	2.85: 
	2.84: 
	2.83: 
	2.82: 
	2.81: 
	2.80: 
	2.79: 
	2.78: 
	2.77: 
	2.76: 
	2.75: 
	2.74: 
	2.73: 
	2.72: 
	2.71: 
	2.70: 
	2.69: 
	2.68: 
	2.67: 
	2.66: 
	2.65: 
	2.64: 
	2.63: 
	2.62: 
	2.61: 
	2.60: 
	2.59: 
	2.58: 
	2.57: 
	2.56: 
	2.55: 
	2.54: 
	2.53: 
	2.52: 
	2.51: 
	2.50: 
	2.49: 
	2.48: 
	2.47: 
	2.46: 
	2.45: 
	2.44: 
	2.43: 
	2.42: 
	2.41: 
	2.40: 
	2.39: 
	2.38: 
	2.37: 
	2.36: 
	2.35: 
	2.34: 
	2.33: 
	2.32: 
	2.31: 
	2.30: 
	2.29: 
	2.28: 
	2.27: 
	2.26: 
	2.25: 
	2.24: 
	2.23: 
	2.22: 
	2.21: 
	2.20: 
	2.19: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	1.Plus: 
	1.Reset: 
	1.Minus: 
	1.EndRight: 
	1.StepRight: 
	1.PlayPauseRight: 
	1.PlayRight: 
	1.PauseRight: 
	1.PlayPauseLeft: 
	1.PlayLeft: 
	1.PauseLeft: 
	1.StepLeft: 
	1.EndLeft: 
	anm1: 
	1.198: 
	1.197: 
	1.196: 
	1.195: 
	1.194: 
	1.193: 
	1.192: 
	1.191: 
	1.190: 
	1.189: 
	1.188: 
	1.187: 
	1.186: 
	1.185: 
	1.184: 
	1.183: 
	1.182: 
	1.181: 
	1.180: 
	1.179: 
	1.178: 
	1.177: 
	1.176: 
	1.175: 
	1.174: 
	1.173: 
	1.172: 
	1.171: 
	1.170: 
	1.169: 
	1.168: 
	1.167: 
	1.166: 
	1.165: 
	1.164: 
	1.163: 
	1.162: 
	1.161: 
	1.160: 
	1.159: 
	1.158: 
	1.157: 
	1.156: 
	1.155: 
	1.154: 
	1.153: 
	1.152: 
	1.151: 
	1.150: 
	1.149: 
	1.148: 
	1.147: 
	1.146: 
	1.145: 
	1.144: 
	1.143: 
	1.142: 
	1.141: 
	1.140: 
	1.139: 
	1.138: 
	1.137: 
	1.136: 
	1.135: 
	1.134: 
	1.133: 
	1.132: 
	1.131: 
	1.130: 
	1.129: 
	1.128: 
	1.127: 
	1.126: 
	1.125: 
	1.124: 
	1.123: 
	1.122: 
	1.121: 
	1.120: 
	1.119: 
	1.118: 
	1.117: 
	1.116: 
	1.115: 
	1.114: 
	1.113: 
	1.112: 
	1.111: 
	1.110: 
	1.109: 
	1.108: 
	1.107: 
	1.106: 
	1.105: 
	1.104: 
	1.103: 
	1.102: 
	1.101: 
	1.100: 
	1.99: 
	1.98: 
	1.97: 
	1.96: 
	1.95: 
	1.94: 
	1.93: 
	1.92: 
	1.91: 
	1.90: 
	1.89: 
	1.88: 
	1.87: 
	1.86: 
	1.85: 
	1.84: 
	1.83: 
	1.82: 
	1.81: 
	1.80: 
	1.79: 
	1.78: 
	1.77: 
	1.76: 
	1.75: 
	1.74: 
	1.73: 
	1.72: 
	1.71: 
	1.70: 
	1.69: 
	1.68: 
	1.67: 
	1.66: 
	1.65: 
	1.64: 
	1.63: 
	1.62: 
	1.61: 
	1.60: 
	1.59: 
	1.58: 
	1.57: 
	1.56: 
	1.55: 
	1.54: 
	1.53: 
	1.52: 
	1.51: 
	1.50: 
	1.49: 
	1.48: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.198: 
	0.197: 
	0.196: 
	0.195: 
	0.194: 
	0.193: 
	0.192: 
	0.191: 
	0.190: 
	0.189: 
	0.188: 
	0.187: 
	0.186: 
	0.185: 
	0.184: 
	0.183: 
	0.182: 
	0.181: 
	0.180: 
	0.179: 
	0.178: 
	0.177: 
	0.176: 
	0.175: 
	0.174: 
	0.173: 
	0.172: 
	0.171: 
	0.170: 
	0.169: 
	0.168: 
	0.167: 
	0.166: 
	0.165: 
	0.164: 
	0.163: 
	0.162: 
	0.161: 
	0.160: 
	0.159: 
	0.158: 
	0.157: 
	0.156: 
	0.155: 
	0.154: 
	0.153: 
	0.152: 
	0.151: 
	0.150: 
	0.149: 
	0.148: 
	0.147: 
	0.146: 
	0.145: 
	0.144: 
	0.143: 
	0.142: 
	0.141: 
	0.140: 
	0.139: 
	0.138: 
	0.137: 
	0.136: 
	0.135: 
	0.134: 
	0.133: 
	0.132: 
	0.131: 
	0.130: 
	0.129: 
	0.128: 
	0.127: 
	0.126: 
	0.125: 
	0.124: 
	0.123: 
	0.122: 
	0.121: 
	0.120: 
	0.119: 
	0.118: 
	0.117: 
	0.116: 
	0.115: 
	0.114: 
	0.113: 
	0.112: 
	0.111: 
	0.110: 
	0.109: 
	0.108: 
	0.107: 
	0.106: 
	0.105: 
	0.104: 
	0.103: 
	0.102: 
	0.101: 
	0.100: 
	0.99: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


