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Local Geometry and Adaptivity

∙ Local geometry of the error surface is important for choosing good
learning rate

Flat error surface ⇒ a large learning rate is desirable.
Steep error surface ⇒ a small learning rate is essential.
Near a minimizer ⇒ small learning rate to avoid oscillatory behavior.

∙ Fixed learning rates (such as constant learning rates, or 1
t ) are not

able to adapt to the local geometry of the error surface.

∙ We want to exploit local geometry to adaptively set the learning
rates.
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Per-dimension adaptivity

∙ We have seen in earlier lectures that in a deep net, the gradients at
different layers often differ significantly.

∙ Good initialization and input transformation help, but do not solve
the problem completely.

∙ If we can set per-dimension adaptive learning rates, it can help us
to speed up learning for layers with small gradients, and avoid
overshooting for layers with large gradients.
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Learning Rate Annealing

∙ Reduce learning rate when the error plateaus.

e.g. reduce from 0.1 to 0.01.
Often use the error on a validation set

∙ Helpful when the algorithm is oscillating around a minimizer due to
large learning rate.
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Newton’s Method

∙ Newton’s method provides a way to better take local geometry into
account than vanilla gradient descent.

∙ Newton’s method updates current iterate w to

w′ = w − H−1g ,

where H = ∇2 f (w) and g are the Hessian and gradient of f at w.

∙ This is derived by choosing d to minimize the second order Taylor
series approximation

f (w + d) ≈ f (w) + d⊤∇ f (w) +
1

2
d⊤Hd .

∙ Newton’s method is computationally expensive.
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Diagonal approximation

∙ The diagonal (h1, . . . , hm) of H can be efficiently computed.

∙ We approximate Newton’s method

wi = wi −
1

hi + 𝜖
gi ,

where 𝜖 > 0 is a constant.
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AdaGrad

∙ For each weight w , keep the sum of squared derivative.

∙ The sum v (t) at iteration t is recursively computed as

v (t) = v (t−1) + (g (t))2,

where g (t) is w ’s derivative at iteration t.

∙ At iteration t, current weight w (t) is updated to

w (t+1) = w (t) − 𝜂√︀
v (t) + 𝜖

g (t),

where 𝜂 > 0 is a global learning rate shared by all weights.

Duchi, Hazan, and Singer, Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, 2010
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∙ AdaGrad evens out progress for all weights.

Weights with small gradients move faster.
Weights with large gradients move slower.

∙ However, the gradients accumulate, and after a while no progress
can be made.

∙ In addition, the method can be sensitive to the initial values.

Large initial gradients can make learning too slow.
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RMSProp

∙ RMSProp keeps a moving average of the squared derivative,
instead of the sum.

∙ The moving average v (t) at iteration t is recursively computed as

v (t) = 𝜌v (t−1) + (1− 𝜌)(g (t))2.

∙ At iteration t, current weight w (t) is updated to

w (t+1) = w (t) − 𝜂√︀
v (t) + 𝜖

g (t),

where 𝜂 > 0 is a global learning rate shared by all weights.

∙ 𝜌 is typically close to 1.
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∙ RMSProp evens out progress for all weights as AdaGrad.

∙ Additionally, it is less sensitive to the initial values, and can keep
on making progress after many iterations.
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AdaDelta

∙ An interesting observation

GD: unit of change ∝ unit of g ∝ 𝜕f
𝜕w ∝ 1

unit of w .

Newton’s method: unit of change ∝ unit of H−1g ∝ 𝜕f
𝜕w /

𝜕2f
𝜕w2

∝ unit of w .

∙ AdaDelta is an improvement of RMSProp by adding a scaling
factor to each dimension so that the updates have the right units.
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∙ AdaDelta computes the moving average v (t) of the squared
derivative as in RMSProp.

∙ It additionally computes a moving average for the squared updates

s(t+1) = 𝜌s(t) + (1− 𝜌)(w (t+1) − w (t))2.

∙ At iteration t, current weight w (t) is updated to

w (t+1) = w (t) −
√︀

s(t) + 𝜖√︀
v (t) + 𝜖

g (t).

∙ Note that unit of the update is the same as that of w .

Zeiler, ADADELTA: an adaptive learning rate method, 2012
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∙ AdaDelta overcomes the sensitivity to the hyperparameter selection
in methods like RMSProp.

∙ AdaDelta appears to be robust to noisy gradient information, and
is insensitive to the choice of the hyperparameter 𝜖.
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Adam

∙ Adam combines RMSProp with standard momentum.
∙ For each weight w , it computes (biased) 1st moment m(t) and 2nd
moment v (t) at iteration t as follows

m(t) = 𝜌1m
(t−1) + (1− 𝜌1)g

(t),

v (t) = 𝜌2m
(t−1) + (1− 𝜌2)(g

(t))2.

∙ The total weights of the derivatives are not 1, and a bias correction
is applied

m̂(t) = m(t)/(1− 𝜌t1),

v̂ (t) = m(t)/(1− 𝜌t2).

∙ At iteration t, current weight w (t) is updated to

w (t+1) = w (t) − 𝜂√︀
v̂ (t) + 𝜖

m̂(t).

Kingma and Ba, Adam: A method for stochastic optimization, 2015
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Visualizing Optimization Algorithms

https://imgur.com/a/Hqolp#2dKCQHh
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Your Turn

Which of the following statement is correct? (Multiple choice)

(a) Having a learning rate per dimension for gradient-based algorithm
can possibly lead to better convergence behavior.

(b) AdaGrad, RMSProp and AdaDelta can all be seen as
gradient-based methods that adaptively define learning rates for
each dimension.

(c) Adam combines RMSProp with standard momentum.
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Numerical Optimization for Machine

Learning

∙ The error surface is often nonconvex and nonsmooth (local
minima, saddle points, plateaus...)

∙ Some commonly used techniques

Acceleration using a momentum term (standard momentum,
Nesterov)
Good initialization (Xavier, He)
Normalization tricks (input normalization, weight-dependent
normalization for non-input layers)
Adaptive learning rates (Adagrad, RMSProp, AdaDelta, Adam)
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Debugging Your Neural Net

∙ Architecture has enough but not too much capacity?

∙ Input normalized?

∙ Good initialization?

∙ Suitable loss function?

∙ Suitable optimization algorithm with suitable hyperparameters?

∙ Trained for long enough?
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