
Improving Generalization

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 28

Schedule

A tentative schedule is available on BlackBoard

∙ Week 1-2: machine learning basics

∙ Week 3-4: neural network basics

∙ Week 5-6: deep architectures

∙ Week 7-8: optimization

∙ Week 9-10: improving generalization

∙ Week 10-11: unsupervised learning

∙ Week 12: reinforcement learning

2 / 28

Chasing After Regularity

∙ So far, we have already seen two building blocks for crafting a
good learning system

many different machine/deep learning models
many techniques to optimize a given numerical objective

∙ Often, we minimize the training error

min
w

1

n

n∑︁
i=1

L((xi , yi),w).

∙ Whether a model works well is problem-specific, and we need to
choose a model of the right capacity (Lecture 6 Model Selection).

3 / 28

What can go wrong with a poor model
∙ A model underfits if it has poorer training set and test set
performance than another model.

The model has a limited capacity, and can’t fit the regularity well.
Use a model with higher capacity.

∙ A model overfits if it has better training performance than another
model, but poorer test performance.

Deep nets often overfit.

∙ We focus on how to avoid overfitting for high-capacity models.

4 / 28

Approaches for Avoiding Overfitting

Get more data

∙ almost always beneficial to train on more data

∙ availability of large datasets is a main driver for deep learning’s
success

Model selection

∙ Choose several models of different capacity
∙ Use model selection techniques to choose one with the right
capacity

enough to fit regularities in data
not enough to also fit noise/irregularities

5 / 28

Model averaging

∙ Train multiple models, and combine their predictions (instead of
keeping only the best model in model selection)
∙ Some common model averaging methods

Bagging: train models on bootstrap samples of the training data
Bayesian learning: construct a ensemble of models weighted by their
posterior

6 / 28

Regularization

∙ Regularization techniques aims to minimize the training error and
avoid fitting to irregularities at the same time
∙ A regularization method may

explicitly define a modified training objective (such as ℓ2
regularization), or
implicitly induce a regularization effect by modifying the learning
algorithm

∙ Some common regularization methods

data augmentation
ℓ1/ℓ2 regularization
early stopping
dropout

7 / 28

Data Augmentation

∙ Data augmentation adds perturbed examples or synthetic examples
to the training set

e.g. LeNet uses distorted digit images
e.g. AlexNet uses left-right reflections of the images

∙ This prevents the model from overfitting the original training set.

∙ Perturbed/synthetic examples should still be realistic to avoid
creating too much irregularities.

8 / 28

ℓ2 Regularization

∙ We have already seen ℓ2 regularization

Ridge regression: minw
(︀
1
n

∑︀
i (w

⊤xi − yi)
2 + 𝜆‖w‖22

)︀
.

Instead of minimizing the training error L(w), minimize
L(w) + 𝜆‖w‖22, where 𝜆 > 0 is a user-specified constant.

∙ ℓ2 regularization keeps the weights small, preventing one feature
from dominating others.

If there are two similar inputs, it puts about half the weight on each,
rather than putting all the weights on one.

9 / 28

A typical plot of how weights change as 𝜆 increases in ridge regression.

10 / 28

Weight decay
∙ From an optimization perspective, ℓ2 regularization is often known

as weight decay

Gradient descent on L(w)

w← w − 𝜂∇ L(w).

Gradient descent on L(w) + 𝜆‖w‖22

w← (1− 2𝜂𝜆)w − 𝜂∇ L(w) (weight decay of 2𝜂𝜆)

Thus ℓ2 regularization shrinks the weight first, and moves along the
negative gradient direction.

11 / 28

Stability

∙ A desirable property of a learning algorithm is stability, i.e., the
learned model should not change drastically if the input is
perturbed.
∙ ℓ2 regularization increases stability.

recall: effect of ℓ2 regularizer on OLS

∙ Regularized model has smaller variance but larger bias.

12 / 28

ℓ1 Regularization

∙ ℓ1 regularization is similar to ℓ2 regularization

For a model with parameters w, instead of minimizing the training
error L(w), it minimizes L(w) + 𝜆‖w‖1, where 𝜆 > 0 is a
user-specified constant.

∙ ℓ1 regularization encourages sparsity — it can make many weights
exactly equal to zero.

This helps interpretation.

13 / 28

∙ A classical example is ℓ1 regularized linear regression (LASSO).

A typical plot of how weights change as 𝜆 increases.

14 / 28

Bayesian Interpretation of

Regularization

Bayesian MAP (maximum a posterior) hypothesis

∙ Assume a prior distribution P(w) on the model parameter vector, a
likelihood function P(D | w), then the posterior probability
P(w | D) is given by

P(w | D) = P(w)P(D | w)/P(D),

∙ wMAP = argmaxw P(w | D) is called the MAP hypothesis.

15 / 28

Regularization as Bayesian prior

∙ Suppose the prior P(w) and the likelihood function P(D | w) are

P(w) ∝ e−r(w),

P(D | w) ∝ e−L(D,w),

where L(D,w) is the error of w on D.

∙ Then we have

wMAP = argmax
w

P(w | D) = argmin
w

(L(D,w) + r(w)) .

Thus the regularizer can be interpreted as a prior distribution P(w).

16 / 28

Early Stopping

∙ When we train more, a model’s test set error can first decrease,
and then increase (see Prac 5).

∙ We can stop training a model early when its performance becomes
poorer on a validation set.

17 / 28

Why early stopping works

∙ This prevents the model from fitting too well to the training data.
∙ For deep nets with sigmoid activation, early stopping prevents the
network to fully exploit the sigmoid nonlinearity

When we start at small initial values, the sigmoid units are at their
linear regions, and thus the network is more or less linear.
As training goes, some weights become large, and thus the network
becomes more nonlinear.
Stopping early prevents the network to evolve into a highly nonlinear
function.

18 / 28

Remark
∙ Early stopping is best used together with a method that is designed
to reduce training error at each iteration (such as vanilla gradient
descent).

Easier to tell when validation error increases.

∙ It is hard to use early stopping with methods like momentum.

They do not attempt to improve performance for each update.
The validation error often oscillates with a decreasing trend.

19 / 28

Dropout

∙ Dropout

defines an ensemble of models based on a given architecture
trains them simultaneously, and
averages them for prediction.

∙ Specifically, given a neural net, we choose to omit each of a set of
h chosen neurons with a probability p.

This defines 2h different architectures.
Each is weighted by the probability of obtaining it.
All share the same parameters.

Srivastava et al., Dropout: a simple way to prevent neural networks from overfitting, 2014

20 / 28

∙ A network and the 4 archictures created by dropping out 2 hidden units with
probability p.

x1 x2

h3

o

h1 h2 ⇒

x1 x2

h3

o

h1 h2

(1− p)2

x1 x2

h3

o

h2

p(1− p)

x1 x2

h3

o

h1

p(1− p)

x1 x2

h3

o

p2

∙ All derived networks share the same parameters as the original network.

21 / 28

Training

∙ The training objective is to miminize

m∑︁
i

pi

⎡⎣1

n

n∑︁
j

L(xj , yj , f
(j)
w)

⎤⎦ ,

where f
(1)
w , . . . , f mw are the m = 2h different architectures, and pi is

the weight of f
(i)
w .

∙ Dropout can be implemented as applying a random binary mask
with values sampled from the Bernoulli distribution B(1− p).

Sample a binary vector (v1, . . . , vh) with vi ∼ B(1− p).
Let (a1, . . . , ah) be the activation values of the chosen neurons.
Change the activation values to (a1v1, . . . , ahvh).

22 / 28

∙ Dropout can be understood as a way to prevent complex
co-adaptation.

When hidden units know which other hidden units are present, they
can co-adapt with each other to fit irregularities well.
If each hidden unit need to work well with different sets of
co-workers, it will try to be useful on its own.

23 / 28

Test time

∙ During test time, we average the outputs of the m models

f (x) =
1

m

m∑︁
i=1

f
(i)
w (x).

Averaging m = 2h models is computationally too expensive.

∙ Can we approximate the above averaging efficiently? Let’s look at
what happens if we just apply dropout to a single output neuron.

y

original

⇒ y

1− p

+ 0

p

= (1− p)y

Average of derived networks’outputs = (1− p)× original network’s output

∙ For the general case, we use the full network, but multiply each
chosen neuron’s activation by (1− p).

Scaling matches the output to its expected value with dropout.

24 / 28

Inverted dropout
∙ Dropout is typically implemented as inverted dropout.

Training: divide the activation of a unit with dropout by 1− p.
Testing: simply return the output of the full network.

∙ Inverted dropout is equivalent to dropout, but simpler – it does not
require scaling at test time.

25 / 28

DropConnect

∙ DropConnect drops connections, instead of activations.

∙ This can be implemented as applying a random binary mask to the
weight matrix.

26 / 28

Your Turn

Which of the following statement is correct? (Multiple choice)

(a) Techniques for alleviating overfitting include getting more data,
model selection, model averaging, regularization.

(b) Early stopping can be seen as an reguarlization technique that
prevents the model from fitting to irregularities in data by stopping
early.

(c) ℓ1 regularization encourages sparse weights.

27 / 28

What You Need to Know

∙ Many methods for improving generalization performance

Get more data
Model selection
Model averaging
Regularization: data augmentation, ℓ1/ℓ2, early stopping, dropout

∙ In practice, we often use a combination of several techniques.

28 / 28

