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Recall: Impressive Results

Image classification
Krizhevsky, Sutskever, and Hinton, Imagenet classification with deep convolutional neural networks, 2012
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Adversarial Examples

original image + imperceptible noise = ostrich

Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus, Intriguing properties of neural networks, 2014
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fast generation of adversarial examples

Goodfellow, Shlens, and Szegedy, Explaining and harnessing adversarial examples, 2015
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photoed adversarial images are still adversarial
⇒ we can fool systems with camera sensors

Kurakin, Goodfellow, and Bengio, Adversarial examples in the physical world, 2016
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Adversarial Examples Are Universal

∙ Much attention has been paid on adversarial examples for neural
nets

∙ But adversarial examples exist for many other models

Linear models: logistic regression, SVMs
Decision trees
Nearest neighbors

∙ and possibly for biological neural nets too...
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The Dress

What’s the color of the dress?

what people see
∙ blue and black

∙ white and gold

∙ blue and brown

∙ others
RGB analysis

∙ dark yellow and light
blue

seller’s photo
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An explanation
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Adversarial Examples are Transferable

∙ Adversarial examples generated for one model are often
misclassified by another model — they are transferable.

∙ While a huge amount of effort has been spent to get good
performance on many very large datasets, many cases still appear
to be hard

e.g. we still can’t get computer vision to work well enough for
autonomous driving in unseen situations
scenes which appear to be essentially the same to us may behave
like adversarial examples to the models

∙ Perhaps the set of hard cases (for ANNs) is much larger than the
set of solvable cases?!
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Implications of Adversarial Examples

∙ Machine learning algorithms do not learn smooth functions on
natural inputs

What we consider as imperceptible perturbations are perceived as
drastic changes by neural nets

∙ Machine learning algorithms do not generalise in the same way as
human brains do

Machine learning algorithms are susceptible to adversarial attacks,
while human brain does not.
Apparently, human brain seems to capture certain highly stable
features on natural inputs.
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∙ Machine learning systems are vulnerable to adversarial attacks

Someone wearing a mask can pretend to be you
A traffic sign can be imperceptibly changed to fool an autonomous
vehicle to make dangerous moves
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Explaining Adversarial Examples

∙ Adversarial examples can be present when a model overfits.

e.g. the decision boundary of 1NN is highly overfitting, and
perturbation can easily change the class.

∙ Adversarial examples can be present when a model has excessive
linearity.

Examples lying close to the linear boundary can be misclassified
when perturbed.
Neural nets often try to work in the linear region!
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Adversarial Attacks

Taxonomy of attacks

∙ A specific outcome desired?

Non-targeted: only an incorrect label required
Targeted: a specific outcome required

∙ Model known?

White box: full knowledge of the model
Black box with probing: no/limited knowledge of the model, but
can probe or query the model
Black box without probing: no/limited knowledge of the model
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White-box Attacks

Minimum perturbation method

∙ A white box targeted attack that searches for minimum
perturbation needed to change prediction to a desired label

∙ Assume that the network computes f : Rm → Rk

for an input x ∈ Rm, f (x) ∈ Rk are the scores for the k classes

∙ Aim: classify perturbed example x+ 𝛿 to class y

min
𝛿∈Rm

‖𝛿‖2

s.t. argmax
i

f (x+ 𝛿)i = y and x+ 𝛿 ∈ [0, 1]m.

This is hard to solve, because it is hard to make sure 𝛿 satisfies the
target class constraint.

Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus, Intriguing properties of neural networks, 2014
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∙ Approximation

min
𝛿∈Rm

c‖𝛿‖22 + L(x+ 𝛿, y , f )

s.t. x+ 𝛿 ∈ [0, 1]m.

∙ Intuitively, we want 𝛿 that

is a valid perturbation (⇐ box constraints),
is small (⇐ regularizer c‖𝛿‖22),
and the class of x + 𝛿 is likely to be y (⇐ minimizing L(x+ 𝛿, y , f ))

∙ The optimization problem is solvable using box-constrained L-BFGS
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Can we perturb this image to fool a neural net to classify it as other
digits like 1, 3, 4, 5, 6?
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original

c = 10−6

c = 0.1

c = 1

c = 10

Min perturbation method examples for LeNet5 on MNIST
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∙ The method involves solving a hard optimization problem, and is
often slow.

∙ The perturbation is small, and sometimes easy to defend by
reducing image quality.
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Fast gradient sign method (FGSM)

∙ A white box non-targeted attack

∙ Aim: increase the loss L(x, y , f ) for true class y

max
𝛿∈Rm

L(x+ 𝛿, y , f ),

s.t. ‖𝛿‖∞ ≤ 𝜖.

∙ This can be solved using gradient ascent methods.

∙ However, multiple function and gradient evaluations are needed,
thus such methods are slow.

Goodfellow, Shlens, and Szegedy, Explaining and harnessing adversarial examples, 2015
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∙ Approximation (linearize L(x+ 𝛿, y , f ))

max
𝛿∈Rm

L(x, y , f ) + 𝛿⊤∇x L(x, y , f ),

s.t. ‖𝛿‖∞ ≤ 𝜖.

∙ Simple closed-form solution: 𝛿 = 𝜖 sgn(∇x L(x, y , f )).

∙ Only need to evaluate the gradient once!
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original

𝜖 = 0.05

𝜖 = 0.1

𝜖 = 0.2

𝜖 = 0.3

FGSM examples for LeNet5 on MNIST
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Black box attacks

∙ Black box attacks generally rely on the transferability of adversarial
examples.

∙ In the complete black box scenario, an ensemble of models are
used to increase transferability.

∙ When it is possible to query the target model, the attacker can use
the responses to train a substitute model to increase transferability.
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Defending Against Adversarial

Examples

Defense methods

∙ Regularization: training with techniques like weight decay (i.e. ℓ2
regularization), dropout

∙ Noise: add noise during training and/or testing

∙ Generative pre-training: learn a representation on a large unlabeled
dataset using a generative model, then perform discriminative
fine-tuning on a labeled dataset

∙ Ensembles: train on adversarial examples constructed for multiple
models

∙ ...
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∙ Attacking is easy

Various methods available, and transferability makes attacks easy
even without much knowledge about the target model.

∙ Defending is difficult

No single method has been found to be very effective yet.
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Adversarial Learning

Train with adversarial examples

∙ To make a model robust to adversarial examples, we can create
many adversarial examples, and add them to the training set.

∙ This can be done iteratively by adding adversarial examples for the
intermediate models.
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Robust training objective

∙ Another approach is to explicitly modify the training objective to
incorporate a term against adversarial examples

∙ A modified loss against FGSM

L̃(x, y , f ) = 𝛼L(x, y , f ) + (1− 𝛼)L(x + r sgn(∇x L(x, y , f )), y , f )

∙ The loss of the perturbed example can’t be too much different
from that or the original example.

∙ This prevents FGSM from significantly reducing the loss of the true
label.

∙ Thus FGSM is less likely to change the class label.
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What You Need to Know

∙ Adversarial examples: universality, transferability and implications

∙ Adversarial attacks: minimum perturbation method, fast gradient
sign method.

∙ Defending against adversarial examples

∙ Adversarial learning: augment dataset with adversarial examples,
robust training objectives.
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