Adversarial Learning

Nan Ye

School of Mathematics and Physics The University of Queensland

Recall: Impressive Results

mite	container ship	motor scooter	leopard
mite	container ship	motor scooter	leopard
black widow	lifeboat	go-kart	jaguar
cockroach	amphibian	moped	cheetah
tick	fireboat	bumper car	snow leopard
starfish	drilling platform	golfcart	Egyptian cat
grille	mushroom	cherry	Madagascar cat
convertible	agaric	dalmatian	squirrel monkey
grille	mushroom	grape	spider monkey
pickup	jelly fungus	elderberry	titi
beach wagon		ffordshire bullterrier	indri
fire engine	dead-man's-fingers	currant	howler monkey

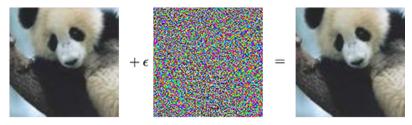
Image classification

Krizhevsky, Sutskever, and Hinton, Imagenet classification with deep convolutional neural networks, 2012

Adversarial Examples

original image + imperceptible noise = ostrich

Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus, Intriguing properties of neural networks, 2014



"panda" 57.7% confidence

"gibbon" 99.3% confidence

fast generation of adversarial examples

Goodfellow, Shlens, and Szegedy, Explaining and harnessing adversarial examples, 2015

photoed adversarial images are still adversarial \Rightarrow we can fool systems with camera sensors \bigcirc \bigcirc \bigcirc \bigcirc

Kurakin, Goodfellow, and Bengio, Adversarial examples in the physical world, 2016

Adversarial Examples Are Universal

- Much attention has been paid on adversarial examples for neural nets
- But adversarial examples exist for many other models
 - Linear models: logistic regression, SVMs
 - Decision trees
 - Nearest neighbors
- and possibly for biological neural nets too...

The Dress

What's the color of the dress?

The Dress

What's the color of the dress?

what people see

- blue and black
- white and gold
- blue and brown
- others RGB analysis
- dark yellow and light blue

The Dress

What's the color of the dress?

what people see

- blue and black
- white and gold
- blue and brown
- others RGB analysis
- dark yellow and light blue

seller's photo

An explanation

your derivin boundars

Adversarial Examples are Transferable

- Adversarial examples generated for one model are often misclassified by another model they are transferable.
- While a huge amount of effort has been spent to get good performance on many very large datasets, many cases still appear to be hard
 - e.g. we still can't get computer vision to work well enough for autonomous driving in unseen situations
 - scenes which appear to be essentially the same to us may behave like adversarial examples to the models
- Perhaps the set of hard cases (for ANNs) is much larger than the set of solvable cases?!

Implications of Adversarial Examples

- Machine learning algorithms do not learn smooth functions on natural inputs
 - What we consider as imperceptible perturbations are perceived as drastic changes by neural nets
- Machine learning algorithms do not generalise in the same way as human brains do
 - Machine learning algorithms are susceptible to adversarial attacks, while human brain does not.
 - Apparently, human brain seems to capture certain highly stable features on natural inputs.

- Machine learning systems are vulnerable to adversarial attacks
 - Someone wearing a mask can pretend to be you
 - A traffic sign can be imperceptibly changed to fool an autonomous vehicle to make dangerous moves

Explaining Adversarial Examples

- Adversarial examples can be present when a model overfits.
 - e.g. the decision boundary of 1NN is highly overfitting, and perturbation can easily change the class.
- Adversarial examples can be present when a model has excessive linearity.
 - Examples lying close to the linear boundary can be misclassified when perturbed.
 - Neural nets often try to work in the linear region!

Adversarial Attacks

Taxonomy of attacks

- A specific outcome desired?
 - Non-targeted: only an incorrect label required
 - Targeted: a specific outcome required
- Model known?
 - White box: full knowledge of the model
 - Black box with probing: no/limited knowledge of the model, but can probe or query the model
 - Black box without probing: no/limited knowledge of the model

White-box Attacks

Minimum perturbation method

- A white box targeted attack that searches for minimum perturbation needed to change prediction to a desired label
- Assume that the network computes $f: \mathbf{R}^m
 ightarrow \mathbf{R}^k$
 - for an input $\mathbf{x} \in \mathbf{R}^m$, $f(\mathbf{x}) \in \mathbf{R}^k$ are the scores for the k classes
- Aim: classify perturbed example $\mathbf{x} + \delta$ to class y

$$egin{aligned} \min_{\delta\in\mathbf{R}^m} & \|\delta\|_2 \ ext{s.t.} & & rg\max_i f(\mathbf{x}+\delta)_i = y ext{ and } \mathbf{x}+\delta \in [0,1]^m. \end{aligned}$$

This is hard to solve, because it is hard to make sure δ satisfies the target class constraint.

Approximation

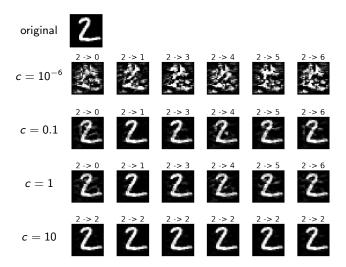
$$\min_{\delta \in \mathbf{R}^m} \quad c \|\delta\|_2^2 + L(\mathbf{x} + \delta, y, f)$$

s.t. $\mathbf{x} + \delta \in [0, 1]^m$.

• Intuitively, we want δ that

- is a valid perturbation (← box constraints),
- is small (\Leftarrow regularizer $c \|\delta\|_2^2$),
- and the class of $x + \delta$ is *likely* to be $y \ (\Leftarrow \text{ minimizing } L(\mathbf{x} + \delta, y, f))$
- The optimization problem is solvable using box-constrained L-BFGS

Can we perturb this image to fool a neural net to classify it as other digits like 1, 3, 4, 5, 6?



Min perturbation method examples for LeNet5 on MNIST

- The method involves solving a hard optimization problem, and is often slow.
- The perturbation is small, and sometimes easy to defend by reducing image quality.

Fast gradient sign method (FGSM)

- A white box non-targeted attack
- Aim: increase the loss $L(\mathbf{x}, y, f)$ for true class y

$$\max_{\boldsymbol{\delta} \in \mathbf{R}^m} \quad L(\mathbf{x} + \delta, y, f),$$

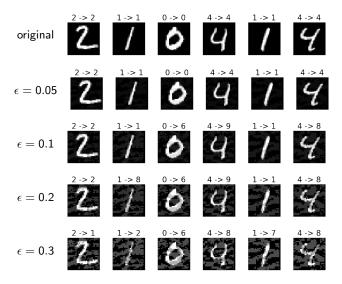
s.t. $\|\delta\|_{\infty} \leq \epsilon.$

- This can be solved using gradient ascent methods.
- However, multiple function and gradient evaluations are needed, thus such methods are slow.

• Approximation (linearize $L(\mathbf{x} + \delta, y, f)$)

$$\begin{split} \max_{\delta \in \mathbf{R}^m} & L(\mathbf{x}, y, f) + \delta^\top \, \nabla_{\mathbf{x}} \, L(\mathbf{x}, y, f), \\ \text{s.t.} & \|\delta\|_\infty \leq \epsilon. \end{split}$$

- Simple closed-form solution: $\delta = \epsilon \operatorname{sgn}(\nabla_{\mathbf{x}} L(\mathbf{x}, y, f)).$
- Only need to evaluate the gradient once!



FGSM examples for LeNet5 on MNIST

Black box attacks

- Black box attacks generally rely on the transferability of adversarial examples.
- In the complete black box scenario, an ensemble of models are used to increase transferability.
- When it is possible to query the target model, the attacker can use the responses to train a substitute model to increase transferability.

Defending Against Adversarial Examples

Defense methods

- Regularization: training with techniques like weight decay (i.e. ℓ_2 regularization), dropout
- Noise: add noise during training and/or testing
- Generative pre-training: learn a representation on a large unlabeled dataset using a generative model, then perform discriminative fine-tuning on a labeled dataset
- Ensembles: train on adversarial examples constructed for multiple models

• ...

- Attacking is easy
 - Various methods available, and transferability makes attacks easy even without much knowledge about the target model.
- Defending is difficult
 - No single method has been found to be very effective yet.

Adversarial Learning

Train with adversarial examples

- To make a model robust to adversarial examples, we can create many adversarial examples, and add them to the training set.
- This can be done iteratively by adding adversarial examples for the intermediate models.

Robust training objective

- Another approach is to explicitly modify the training objective to incorporate a term against adversarial examples
- A modified loss against FGSM

 $\tilde{L}(\mathbf{x}, y, f) = \alpha L(\mathbf{x}, y, f) + (1 - \alpha)L(x + r \operatorname{sgn}(\nabla_{\mathbf{x}} L(\mathbf{x}, y, f)), y, f)$

- The loss of the perturbed example can't be too much different from that or the original example.
- This prevents FGSM from significantly reducing the loss of the true label.
- Thus FGSM is less likely to change the class label.

What You Need to Know

- Adversarial examples: universality, transferability and implications
- Adversarial attacks: minimum perturbation method, fast gradient sign method.
- Defending against adversarial examples
- Adversarial learning: augment dataset with adversarial examples, robust training objectives.