
Activation Functions

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 25

What is Needed for Generalization?

∙ Recall

∙ To attain good generalization performance
the model class need to be able to approximate the true model well.
in addition, it should be possible to learn a (near-) optimal
approximation within the class.

∙ We look at how activation functions affect the generalization
performance of neural nets in this lecture.

2 / 25

Approximation Power

∙ True input-output relationship: y = f (x) = x2, x ∈ [−1, 1].

∙ Assumed model: single-hidden layer MLP, sigmoid activation for
hidden units, and identity activation for the output unit.

∙ Is there a model that approximates f well?

i.e. can we find a neural net g(x) of the form∑︀m
i=1 𝛼i𝜎(wix + bi) + 𝛽 such that |g(x)− f (x)| is small for all

x ∈ [−1, 1]?

3 / 25

∙ Yes, we just need 2 sigmoid units for a very good approximation!

x2 ≈ 2.2𝜎(−3.15x − 3) + 2.2𝜎(3.15x − 3)− 0.205, x ∈ [−1, 1].

∙ What happens if f (x) = sin(2𝜋x)?

4 / 25

∙ We just need 3 sigmoid units for a very good approximation!

sin(x) ≈ 10.9𝜎(−6.35x − 3.05)− 10.9𝜎(6.35x − 3.05)− 36.6𝜎(−1.3x) + 18.23,
x ∈ [−1, 1].

∙ Why can neural nets approximate these functions well?

5 / 25

∙ A key factor is the activation function

Why? MLPs with identity function are just linear functions ⇒ they
can’t approximate x2 or sin(2𝜋x) well.
So the sigmoid activation plays an important role in our examples.

∙ Can we approximate functions other than x2 and sin(2𝜋x)? Does
other activation functions work?

∙ Universal approximation theorems give affirmative answers to these
questions.

6 / 25

Universal Approximation

∙ Under mild conditions, a single-hidden layer MLP using a bounded,
continuous and monotonically increasing activation function have
the universal approximation property

universal approximation = with sufficiently many neurons, we can
approximate any continuous function arbitrarily well (typically on a
compact domain)
Example activations: sigmoid, tanh

∙ This can be extended to certain unbounded activation functions

Example activations: ReLU, truncated power

∙ Most activations are thus “equal” in the sense that they have the
universal approximation property.

7 / 25

∙ However, they are not really equal considering

computational efficiency
difficulty to optimize
generalization performance

∙ This motivates much research on designing good activation
functions.

8 / 25

Binary Step

∙ f (u) =

{︃
1, u ≥ 0.

0, u < 0.

∙ Used in the perceptron (using -1 instead of 0 to denote inactive
state), but provably hard to train in general.

9 / 25

+ biologically appealing, as biological neurons generate all-or-none
electrochemical pulses.

− it makes the neural net discontinuous, thus not ideal for
approximating continuous continuous functions.

− saturates too easily ⇒ hard to learn

saturation = little/no change if input increases further
saturation ⇒ vanishing gradients ⇒ gradient-based learning is hard
Gradient, if exists, is always 0 for binary step activation!

10 / 25

Sigmoid (aka logistic)

∙ f (u) = 𝜎(u) = 1
1+e−u

sigmoid squashes input to the range (0,1)

11 / 25

+ it is continuous and differentiable with smoothly changing
gradients ⇒ gradient-based learning is possible

− it still saturates for large inputs, and this kill the gradients.

− exponentiation is a bit expensive

− sigmoid outputs are not zero-centered

recall: we use various tricks to keep input zero-centered

12 / 25

tanh (hyperbolic tangent)

∙ f (u) = tanh(u) = eu−e−u

eu+e−u

tanh squashes numbers to the range (-1,1).

∙ Essentially the same pros and cons as sigmoid, but tanh is
zero-centered.

∙ Note: both sigmoid and tanh are used in LSTM (why? we need to
take the desirable range of the output into account).

13 / 25

ReLU

∙ f (u) = max(0, u) = (u)+

The ReLU unit does not saturate in +region.

∙ It approximates the sum of infinitely many shifted copies of the
logistic unit.

∞∑︁
i=1

𝜎(x − i + 0.5) ≈ ln(1 + ex) ≈ max(0, x).

Nair and Hinton, Rectified linear units improve restricted boltzmann machines, 2010

14 / 25

+ ReLU is efficiently computable (no exponentiation), and converges
much faster than sigmoid/tanh in practice.

+ ReLU often has better generalization than sigmoid/tanh in practice.

− output not zero-centered.

− a dead ReLU never activates again.

15 / 25

Leaky ReLU (LReLU)

∙ f (u) = max(0.01u, u).

Leaky ReLU does not saturate.

∙ Leaky ReLU has essentially the same pros and cons as ReLU, but it
never dies.

Maas, Hannun, and Ng, Rectifier nonlinearities improve neural network acoustic models, 2013

16 / 25

Parametric ReLU (PReLU)

∙ Slopes other than 0.01 may be used for the negative part in leaky
ReLU.

∙ Tuning the slope using cross-validation can lead to better results,
but too tedious and slow.

∙ A better idea: learn a domain-specific slope together with other
parameters.

∙ Parametric ReLU

f (u) = I (u < 0)𝛼u + I (u ≥ 0)u,

where 𝛼 > 0 is learnable parameter.

He, Zhang, Ren, and Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, 2015

17 / 25

ELU (Exponential Linear Unit)

∙ f (u) = (u)+ +min(0, 𝛼(eu − 1)) (𝛼 > 0 is user-specified).

+ ELU alleviates vanishing gradients in the positive part as in
ReLU/LReLU/PReLU.

+ It has closer to zero mean outputs than ReLU.

+ Its negative saturation regime adds some robustness to noise as
compared to LReLU/PReLU.

− It requires exponentiation.

Clevert, Unterthiner, and Hochreiter, Fast and accurate deep network learning by exponential linear units (elus), 2015

18 / 25

SELU (Scaled ELU)

∙ f (x) = 𝜆[(u)++min(0, 𝛼(eu−1))] with 𝛼 ≈ 1.6733 and 𝜆 ≈ 1.0507.

∙ ELU uses user-defined 𝛼 and 𝜆 = 1.
∙ In MLP using SELU, activations converge to zero mean and unit
variance given normalized input and weights ∼ N(0, 1

nin
).

Normalization tricks are not needed.

Klambauer, Unterthiner, Mayr, and Hochreiter, Self-normalizing neural networks, 2017

19 / 25

∙ Plot of mean and variance of activations against number of layers

Note that the mean and variance remain close to 0 and 1
respectively.

20 / 25

∙ Distribution of the activations are bimodal for normalized input

The distributions remain quite stable.

21 / 25

∙ For activations not close to unit variance, there is an upper and
lower bound on the variance, thus, vanishing and exploding
gradients are impossible.

22 / 25

Derivatives

name f (x) f ′(x)

sigmoid/logistic 1
1+e−u f (u)(1− f (u))

hyperbolic tangent eu−1
eu+1

1
2
(1− f (u)2)

ReLU max(0, u) I (u > 0)
leaky ReLU max(0.01u, u) 0.01I (u ≤ 0) + I (u > 0)

parametric ReLU max(𝛼u, u) (𝛼I (u ≤ 0) + I (u > 0), uI (u ≤ 0))

ELU

{︃
u, if u > 0,

𝛼(eu − 1), if u ≤ 0.

{︃
1, if u > 0,

f (u) + 𝛼, if u ≤ 0.

∙ Derivative computation is cheap after function evaluation

even for activations requiring exponentiation

23 / 25

Choosing an Activation Function

∙ Avoid exponentiation if time is critical

∙ Avoid saturating units if training often get stuck

∙ ReLU is often a good starting point, but fancier versions may give
you some performance improvement.

∙ Zero-mean and unit variance is desirable.

24 / 25

What You Need to Know

∙ Activation functions often differ wrt computational efficiency,
difficulty to optimize, generalization performance.

∙ Some commonly used activation functions

Step, sigmoid, tanh, ReLU, LReLU, PReLU, ELU, SELU

∙ General rules for choosing an activation function

25 / 25

