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Young Woman or Old Woman?
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young woman old woman

You see what you pay attention to!
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???

You see nothing if you don’t pay attention!
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Therefore, attention is all you need

... to distort understand reality!
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Attention Mechanism for ANNs

∙ Human brain receives massive amount of information at each
time step, but often focuses on a tiny portion at a time, and then
integrate these pieces together.

∙ For example, consider recognising digits in translated MNIST
images.

∙ Apparently, we do not pay much attention to the black region,
but quickly focus on the white region to identify the digits.

∙ Such attention mechanism can be implemented in artificial
neural nets as well.
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A general attention framework

s

available information

v1:K

items of interest

relevance scoring 𝛼1:K

weights of items

focus & aggregrate o

result of attention

o =
∑︀K

k=1 𝛼k f𝜑(vk )

∙ Intuitively, attention is about deciding how relevant a number of
items of interest are given what we already know, and then
aggregating the information from the relevant items.

∙ What we have
current state s representing available information
a list of items of interest v1:K

∙ What we want
an attentive view of v1:K given s
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Relevance scoring
∙ Soft attention: maps s and v1:K to a distribution 𝛼1:K .

implemented using a compatibility/relevance/score function r𝜃

rk = r𝜃(s,vk ), k = 1, . . . ,K ,

𝛼1:K = softmax(r1:K ).

∙ Hard attention: maps s and v1:K to an index in 1, . . . ,K .
can be viewed as a special case of soft attention
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Focus & aggregrate
∙ We can use a function f𝜑 to get a focused view on each vk

∙ The focused views are then aggregrated to
∑︀K

k=1 𝛼k f𝜑(vk ).
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Object Recognition with Attention

Overall architecture
∙ An RNN is used to make a sequence of glimpses on the image.
∙ At each time step

Glimpse network glimpses on a location to return a feature vector .
RNN takes in the feature vector to update its hidden state.
Location network proposes a new location to look at using the hidden state.
Action network outputs a class distribution based on current hidden state.

Mnih, Heess, Graves, et al., Recurrent models of visual attention, 2014
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Object Recognition with Attention

Attention inputs
∙ Available information: hidden state ht of an RNN
∙ Items of interest: locations in an image x (together with x)

Mnih, Heess, Graves, et al., Recurrent models of visual attention, 2014
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Object Recognition with Attention

Components of attention
∙ Hard attention fl : maps ht to a location lt at time t .
∙ Focused view gt at a location lt generated in two steps

(A) glimpse sensor 𝜌: maps x and lt to multiple resolution
patches
(B) glimpse network: maps 𝜌(x , lt) and lt to gt .

∙ RNN takes in gt , and updates ht to ht+1
Mnih, Heess, Graves, et al., Recurrent models of visual attention, 2014
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Object Recognition with Attention

Training
∙ Training objective is to maximize the total classification

accuracy across different time steps.
∙ Training algorithm is based on a reinforcement learning

algorithm called REINFORCE.

Mnih, Heess, Graves, et al., Recurrent models of visual attention, 2014
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Object Recognition with Attention

Prediction
∙ Prediction is done using the final action network.

Mnih, Heess, Graves, et al., Recurrent models of visual attention, 2014
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∙ On original MNIST dataset, RAM (recurrent attention model) is
able to perform competitively as the number of glimpses
increases.
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∙ On translated MNIST dataset, RAM (recurrent attention model)
is able to outperform models without an attention mechanism.
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Multiple Object Recognition with

Attention

Extension of RAM to multiple object recognition
∙ A more sophisticated RNN architecture.
∙ A context network for initialising the hidden state.
∙ Output a label for a target after a fixed number of glimpses.
∙ A special end-of-sequence class is used to deal with variable

number of objects.
Ba, Mnih, and Kavukcuoglu, Multiple object recognition with visual attention, 2014
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Recall: Image Captioning

∙ Image captioner generates a caption for a given image.
∙ This can be treated as a one-to-many sequence modelling

problem.
∙ An RNN architecture

Vinyals et al., Show and tell: Lessons learned from the 2015 mscoco image captioning challenge, 2016
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Image Captioning with Attention

Overview
∙ The RNN captioner can be modified to incorporate an attention

mechanism.
∙ Instead of using the last fully connected hidden layer of a CNN

as the feature extractor, a lower layer convolutional layer can be
used to provide features for parts of the image.

∙ The attention mechanism decides which part to look at.

Xu et al., Show, attend and tell: Neural image caption generation with visual attention, 2015
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Image Captioning with Attention

Attention inputs
∙ Items of interest: feature vectors v1, . . . ,vL for L different

locations of the image, provided by the CNN
∙ Available information: the hidden state ht , with h0 as the output

of an MLP using v̄ = 1
L
∑︀

i vi as the input.

Xu et al., Show, attend and tell: Neural image caption generation with visual attention, 2015
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Image Captioning with Attention

Components of attention
∙ At time step t

Relevance scoring with r𝜃 as an MLP
ri = r𝜃(ht−1,vi), 𝛼1:L = softmax(r1:L)

(Aggregation) Compute zt =
∑︀L

i=1 𝛼t,ivi .
Compute ht using ht−1, zt , and prev word yt−1.
Compute dt , distribution over vocab, using ht , zt , yt−1

∙ Hard attention can be used in place of soft attention.
Xu et al., Show, attend and tell: Neural image caption generation with visual attention, 2015
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Soft (top) versus hard (bottom) attention
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Understanding the captioner by inspecting its attention
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Understanding the captioner’s mistakes by inspecting its attention
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Recall: Machine Translation

∙ We can perform machine translation using a two-RNN
architecture

The encoder RNN sequentially reads each word from the source
sentence, and produces the final hidden state as a context
vector c summarizing what has been seen
The decoder RNN produces a translation by sequentially
predicting the next workd based on previous word, previous
hidden state and c

Cho et al., Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, 2014
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Machine Translation with Attention

∙ Limitation: the same context vector is used for predicting all
target words

∙ Idea: learn to attend to only the relevant source words when
generating a context vector
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Decoder attention inputs
∙ Recall: equations for basic encoder-decoder architecture

encoder: he
t = f e(he

t−1, xt),

decoder: hd
t = f d(hd

t−1, yt−1, c),

yt ∼ g(· | hd
t , yt−1, c).

The context vector c is the final hidden state he
n.

∙ Items of interest: encoder hidden states he
1, . . . ,h

e
n

∙ Available information: decoder hidden state hd
t .
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Components of attention
∙ At time step t

Relevance scoring with an MLP r𝜃
ri = r𝜃(hd

t−1,h
e
i ), 𝛼1:n = softmax(r1:n)

Aggregation: c =
∑︀

i 𝛼ihe
i
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Translation from English to French
∙ Each row shows the attention weights over source words when generating a

target word, with black and white representing 0 and 1 respectively.
∙ E.g. économique is generated by looking a both European and Economic,

and then deciding that in French Economic comes first.
Bahdanau, Cho, and Bengio, Neural machine translation by jointly learning to align and translate, 2014
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Transformer (Optional)

∙ The transformer is an encoder-decoder
architecture for turning a sequence into
another.

∙ It’s the model of choice for many NLP
problems, such as machine translation,
document generation.

∙ It has been adapted to solve various
computer vision problems.

Vaswani et al., Attention Is All You Need, 2017
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∙ RNN-based encoder-decoder architecture:
uses an RNN to encode the input
computation at one position depends on previous positions ⇒
hard to parallelize computation at different positions

∙ Transformer’s encoder-decoder architecture
uses self-attention to compute representations of its input and
output
self-attention allows computation at different positions to be done
independently ⇒ easy to parallelize computation at different
positions

∙ Both types of encoder-decoder architectures allow global
dependencies between input and output.
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A different terminology
∙ Transformer’s attention mechanism is described using a

different terminology as compared to the general framework
∙ Current available information is called a query.

We can stack a set of queries q1, . . . ,qn ∈ Rdk as a matrix
Q ∈ Rn×dk .

∙ Items of interest are some key-value pairs
(k1, v1), . . . , (kn, vn) ∈ Rdk × Rdv .

We can stack the keys and values as matrices K ∈ Rn×dk and
V ∈ Rn×dv respectively.
We can view vi as a focused view for the i-th item.
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Scaled dot-product attention
∙ Transformer uses an attention mechanism known as the

scaled dot-product attention

Attention(Q,K ,V ) = softmax
(︂

QK⊤
√

dk

)︂
V .

∙ That is, for a query qi , relevance scoring is done using

rj = qi · kj/
√︀

dk , j = 1, . . . , n,

𝛼1:n = softmax(r1:n).

The result of the attention is
∑︀

j 𝛼jvj .
∙ The compability function here differs from one implemented

as an MLP with qi and kj as the input.
∙ Masking can be applied to avoid attending to specific

positions by setting the corresponding ri values to −∞.
∙ Scaled dot-product attention doesn’t have any learnable

parameters.
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Multi-head attention
∙ The multi-head attention is a more general and richer class

of attention mechanism than the scaled dot-product
attention.

∙ The idea is to
apply h learned linear projections to the queries, keys, and
values
apply scaled dot-product attention to each set of transformed
versions of queries, keys, and values
concatenate the outputs of the scaled dot-product attention,
and apply a learned linear transformtion to the concatenated
output

∙ Specifically, if the queries, keys and values are all in Rd , and
we want a d-dimensional output, multi-head attention
computes

MultiHead(Q,K ,V ) = (z⊤
1 . . . z⊤

h )W O ,

where zi = Attention(QW Q
i ,KW K

i ,VW V
i ),

with W Q
i ∈ Rd×dk , W K

i ∈ Rd×dk , W V
i ∈ Rd×dv , and W O ∈ Rhdv ×d .
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The Transformer architecture

∙ Input and output
Convert each input/output token to a d-dimensional
vector using learned embeddings.
Add d-dimensional vector encoding positional
information to the embeddings

∙ Encoder: N = 6 identical layers with 2 sub-layers
1st layer: a residual multi-head self attention layer
(i.e. Q = K = V = outputs of previous layer) with
layer normalized output.
2nd layer: a residual position-wise MLP with layer
normalized output

∙ Decoder: N = 6 identical layers with 3 sub-layers
1 masked multi-head self attention layer, 1
encoder-decoder attention layer, 1 position-wise
MLP, all with a residual connection and layer
normalization
masking prevents attending to subsequent positions
during training, right-shifted output is provided as an
input to the decoder
during prediction, the input tokens are generated by
the decoder one step at a time (as in the RNN
decoder)
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What You Need to Know...

∙ Attention mechanism: a mechanism to focus on relevant input
a general framework
useful for improving performance, interpreting how a model
makes prediction, and explaining model mistakes

∙ Applications
Object detection
Image captioning
Machine translation
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