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Recall: More on Dimension Reduction

∙ Two types of methods
Feature selection: find a subset of most important variables.

▶ Lasso, LARS, forward/backward selection,...

Feature extraction (or feature projection): embed/project the data
to a lower dimensional space.

▶ PCA, kernel PCA, Isomap, multidimensional scaling, t-SNE, LDA,
autoencoder, ...

∙ We will cover autoencoder in this course (also useful for image
compression).
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Applications of Autoencoders

Image retrieval

Krizhevsky and Hinton, Using very deep autoencoders for content-based image retrieval,
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Lossy image compression

Theis et al., Lossy image compression with compressive autoencoders, 2017
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∙ Visualization of data by reducing them to 2D vectors

∙ Using reduced representation as input to train a classifier (in the
hope of filtering out noises)

∙ Denoising speeches
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PCA as Neural Nets

∙ Suppose the top k principal components for x1, . . . , xn ∈ Rd are
v1, . . . , vk ∈ Rd .

∙ Let P = [v1, . . . , vk ] ∈ Rd×k .

∙ The k-dimensional representation of x ∈ Rd given by PCA is

z = P⊤(x− x̄) ∈ Rk ,

where x̄ = 1
n

∑︀
i xi .

∙ The reconstruction of x using z is

x̃ = Pz+ x̄.
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∙ We can represent the mapping from x to its reconstruction x̃ using
a single hidden layer neural net.

x1 . . . xd

z1 . . . zk

x̃1 . . . x̃d

weights P⊤ ∈ Rk×d , biases −P⊤x̄

weights P ∈ Rd×k , biases x̄

7 / 23



Autoencoders

∙ Autoencoders generalize the neural net view of PCA to learn a
lower dimensional representation of data.

∙ A basic autoencoder has the following structure

input x

code z

output x̃

encoder fe

decoder fd

The encoder fe is a module that computes the code z = fe(x).
The decoder fd is a module that computes the reconstruction
x̃ = fd(z) from the code.
The autoencoder optimizes the parameters of fe and fd to minimize
the reconstruction error L(x, x̃′) = ‖x− x̃‖22.
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Undercomplete and overcomplete autoencoders
∙ Undercomplete: dimension of code < dimension of input.

an undercomplete code is used for data compression

∙ Overcomplete: dimension of code ≥ dimension of input.

surprisingly, an overcomplete code can be used to improve
classification performance
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Linear and nonlinear dimension reduction

∙ PCA performs linear dimension reduction (code is a linear function
of input), and is not suitable for data lying on a nonlinear manifold.

∙ Autoencoders can be used to perform nonlinear dimension
reduction by using nonlinear layers in the encoder and decoder.
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PCA and autoencoder codes for MNIST

Hinton and Salakhutdinov, Reducing the dimensionality of data with neural networks, 2006
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Sparse Autoencoders

∙ The basic autoencoder does not pose any constraint on the code,
and may not learn a useful representation of data.

∙ A regularizer is often introduced to encourage sparsity in the code,
in the hope that the code will capture only regularity in the data.

sparsity = few non-zero entries

∙ Specifically, instead of minimizing L(x, x̃), we minimize

L(x, x̃) + R(z),

where z = fe(x) is the code for x, and R(z) is a regularizer that
favors sparse codes.
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ℓp regularizer
∙ We can choose

R(z) = 𝜆‖z‖1 (ℓ1 regularization) or,
R(z) = 𝜆‖z‖22 (ℓ2 regularization).

∙ ℓ1 regularization can encourage the code values to be exactly 0.

∙ ℓ2 regularization shrinks the code values towards 0.
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k-sparse regularizer

∙ A regularization effect can be obtained by zeroing all but the top k
activation values.

∙ This directly achieve sparsity of a given level, and forces the
decoder to reconstruct using a sparse representation.

∙ The encoder thus need to supply a good code as well.
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KL-divergence regularizer

∙ If each element in the code lies in the range [0, 1], we can use the
KL-divergence to encourage the code values to be close to 0
(inactive).

∙ Assume there are n examples x1, . . . , xn, and h = 1
n

∑︀
i fe(xi ).

∙ Given a desired sparsity level 𝜌 ∈ [0, 1], we train the autoencoder
to minimize ∑︁

i

L(xi , x̃i ) +
∑︁
j

KL(𝜌, hj),

where KL(𝜌, h) = 𝜌 ln 𝜌
h + (1− 𝜌) ln 1−𝜌

1−h is the KL-divergence
between Bernoulli(p) and Bernoulli(1− h).

∙ KL(𝜌, h) is small when h is close to 𝜌, thus the regularizer
encourage the average activation level to to be close to 𝜌.
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Denoising Autoencoders

∙ Denoising autoencoders aim to reconstruct the input using its
perturbed versions.

∙ Specifically, during training, each input is randomly perturbed, but
the reconstruction error is still measured using the original input.

∙ This can be seen as minimizing the objective

Ex(noise)∼q(·|x) L(x, fd(fe(x
(noise)))).
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∙ We can choose the distribution q to propose noisy examples that
mimick actual corruptions on the input.

∙ The resulting denoising autoencoder can then be used to
reconstruct original inputs using corrupted inputs.
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original noisy reconstructed
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Transposed convolution (Optional)

∙ The encoder requires downsizing an input, and convolution
provides a natural way to do this.

∙ The decoder requires upsizing an input, and transposed
convolution provides a way to do this based on convolution.

∙ We can simply use backward convolution to do this!
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∙ Clearly BackwardConv(ForwardConv(x)) ̸= x , i.e., backward
convolution is not the inverse of its corresponding forward
convolution.
Note. The discussion here applies to convolution general convolutions.
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∙ Backward convolution is often called transposed convolution

this is derived from the matrix representation of convolution
forward = multiply input by C ; backward = multipy input by C⊤
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∙ aka deconvolution, which is an unfortunate misnomer as
deconvolution refers to the inverse of convolution in maths
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∙ A transposed convolution is in fact also a convolution
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∙ Why? In backward convolution, each output has the same kind of
connectivity patterns to the inputs (when the input tensor is
padded with zeros).
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∙ A transposed convolution is also called a fractionally strided
convolution

Why? For a transposed convolution with S > 1, its equivalent
convolution is applied to the input tensor with 0 added between the
entries
⇒ effective stride of the equivalent convolution on the original input
tensor is < 1.
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What You Need to Know

∙ From PCA to autoencoders

∙ Sparse autoencoders

∙ Denoising autoencoders
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