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Schedule

A tentative schedule is available on BlackBoard

∙ Week 1-2: machine learning basics

∙ Week 3-4: neural network basics

∙ Week 5-6: deep architectures

∙ Week 7-8: optimization

∙ Week 9-10: improving generalization

∙ Week 10-11: unsupervised learning

∙ Week 12: reinforcement learning
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Generative Modelling

∙ Discriminative modelling aims to find a model for discriminating
data points.

In a probabilistic context, we are interested in P(Y | X ).
Example application: if we know the class distribution for a digit
image, we can label it with the most likely class.

∙ Generative modelling aims to find a model that generates data
points.

In a probabilistic context, we are interested in P(X ,Y ) or P(X ).
Example application: if we know the probability distribution on digit
images, we can sample realistic digit images from it.
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Maximum likelihood estimation

∙ Given x1, . . . , xn independently drawn from P(X ), we often
estimate P(X ) using a parametric model p𝜃(x) by maximizing the
log-likelihood

max
𝜃

∑︁
i

ln p𝜃(xi )

∙ Recall: if X is a continuous random variable, and p𝜇,𝜎2(x) is a
Gaussian with mean 𝜇 and variance 𝜎2, their MLEs are

�̂� =
1

n

∑︁
i

xi , 𝜎2 =
1

n

∑︁
i

(xi − �̂�)2.
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∙ When it is difficult to sample from P(X ), but possible to find a
good approximation p𝜃(X ), we can sample from p𝜃(X ) instead.

∙ In practice, X may be a high-dimensional vector,

designing an approximate p𝜃(x) can be hard,
MLE can be hard for p𝜃(x).

∙ For example, finding a good p𝜃(X ) for digit images.
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Latent variable models

∙ Latent variable models allow us to incorporate unobserved variables
into the generative process.

∙ A latent variable model assumes that each x is generated in two
steps

Sample a latent z from a prior distribution P(z)
Sample x from P(x | z)

∙ The probability of observing x is

P(x) =

∫︁
P(x | z)P(z)dz
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A special case

∙ Latent variable models are a rich class of generative models.
∙ As a useful special case, a function f (Z ) of a random variable Z

can be seen as a latent variable model.

Take P(X | Z ) = I (X = f (Z )).
Then P(x) =

∫︀
P(x | z)P(z)dz = P(f (Z ) = x).

∙ By choosing suitable f , we can turn a simple distribution into a
complex one.

E.g., take Z ∼ U[0, 1] and X = − 1
𝜆 lnZ .

Then X follows an exponential distribution with mean 𝜆.
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Difficulty of MLE

∙ Consider estimating a parametric latent variable model

p𝜃(x) =

∫︁
p𝜃(x | z)p𝜃(z)dz

using a sample x1, . . . , xm.

∙ For MLE, we need to be able to compute p𝜃(x).

∙ In general, we don’t have a simple formula for computing p𝜃(x).
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∙ Simple Monte Carlo estimate doesn’t work either

While we can sample z1, . . . , zm from p𝜃(z) and estimate p𝜃(x)
using 1

m

∑︀
i p𝜃(x | zi ), it often happens that the sampled zi ’s are

unlikely to generate x .
Thus we need a large number of samples to accurately estimate
p𝜃(x).
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Variational inference

∙ When optimizing an intractable objective, the variational approach
finds an approximation to the objective, and optimize the
approximation instead.

∙ For latent variable models, there is a lower bound of the
log-likelihood p𝜃(x) that contains KL-divergence terms.

10 / 23



KL-divergence

∙ The KL-divergence between two distributions p(X ) and q(X ) is

KL(p||q) = EX∼p ln
p(X )

q(X )
=

∑︁
x

p(x) ln
p(x)

q(x)
.

∙ The KL-divergence is always non-negative, with KL(p||q) = 0 when
p = q.

∙ KL(p||q) is often considered as a distance between p and q.

Strictly speaking, it’s not a distance measure as its not symmetric.
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A variational bound

∙ Variational inference makes use of the following bound (evidence
lower bound or ELBO)

ln p𝜃(x) ≥ L𝜃,𝜑(x) = Ez∼q𝜑(ln p𝜃(x | z))− KL(q𝜑(z)||p𝜃(z)),

where q𝜑(z) is an arbitrary distribution that is easy to sample from.

∙ In fact, ln p𝜃(x)− L𝜃,𝜑(x) = KL(q𝜑(z)||p𝜃(z | x)).
∙ If q𝜑(z) is the same as the posterior p𝜃(z | x), then the lower

bound equals to ln p𝜃(x).

∙ Thus q𝜑(z) is often chosen to be a distribution q𝜑(z | x) that
depends on x , so that we can get good approximation for all x ’s.
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∙ Instead of maximizing the log-likelihood ln p𝜃(x), we can now
maximize its lower bound L𝜃,𝜑(x).

∙ However, the lower bound itself can be hard to compute or
approximate.

∙ In addition, while we can sample z1, . . . , zm from q𝜑(z | x) and
estimate L𝜃,𝜑(x) with

1

m

∑︁
i

ln p𝜃(x | zi )−
1

m

∑︁
i

ln
q𝜑(zi | x)
p𝜃(zi )

,

this approximation is not differentiable, and thus we cannot use
SGD to optimize the bound.
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The reparametrization trick
∙ In a lot of cases, we can reparametrize q𝜑(z | x) as z = g𝜑(𝜖, x)

𝜖 is a random variable
distribution of 𝜖 does not depend on 𝜑.

∙ We can estimate L𝜃,𝜑 by

1

m

∑︁
i

ln p𝜃(x | zi )−
1

m

∑︁
i

ln
q𝜑(zi | x)
p𝜃(zi )

,

where zi = g𝜑(𝜖i , x) and 𝜖i ∼ p(𝜖).

∙ This is a differentiable estimator, and now we can use SGD to
optimize L𝜃,𝜑.

14 / 23



Variational Auto-encoders (VAEs)

∙ VAEs have emerged as one of the most popular approaches to
unsupervised learning of complicated distributions.

∙ Advantages

weak assumptions
small approximation error (use high capacity models),
efficient training via backpropagation

15 / 23



∙ VAEs are based on very different mathematical principles as
compared to classical autoencoders.

∙ The variational part comes from all the variational inference
principle that we just covered.

∙ The autoencoder part comes from the neural nets used to represent
q𝜑(z | x) and p𝜃(x | z)

q𝜑 encodes x to a distribution on z
p𝜃 decodes z to a distribution on x

16 / 23



A typical architecture

∙ The prior p𝜃(z) is N(0, I ).

∙ The encoder network computes 𝜇𝜑(x) and Σ𝜑(x)
1/2.

∙ The code z is computed as 𝜇𝜑(x) + Σ
1/2
𝜑 (x)𝜖, where 𝜖 ∼ N(0, I ).

Here q𝜑(z | x) = N(z ;𝜇𝜑(x),Σ𝜑(x)).

∙ The decoder computes 𝜇𝜃(z) and Σ
1/2
𝜃 (z).

Here p𝜃(x | z) = N(x ;𝜇𝜃(z),Σ𝜃(z)).

∙ Now we can compute the differentiable estimator for ELBO and
perform SGD.
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Generating new samples

∙ We first draw z from N(0, I ), instead of using the encoder to
generate z .

∙ We then run the decoder on z to draw a new data point 𝜇𝜃(z).
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Images generated by a VAE trained on MNIST

Doersch, Tutorial on variational autoencoders, 2016
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Conditional VAE

∙ If we are given part of an image, and we want to complete the
image, we can use the given part as an additional input to the
encoder and decoder network in VAE.

∙ The resulting model is known as conditional VAE.
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Ground truth

Images generated by a CVAE given by the blue part

Doersch, Tutorial on variational autoencoders, 2016
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Your Turn

Which of the following statement is correct? (Multiple choice)

(a) A mixture of gaussians is a latent variable model

(b) A variational autoencoder is a latent variable model

(c) ELBO is an upper bound on the log-likelihood of a latent variable
model

(d) The reparametrization trick improves computational efficiency of
variational inference
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What You Need to Know

∙ Discriminative vs generative modelling
∙ Latent variable models

hierarchical structure in the data generation process
only the outcomes but not the intermediate variables are observed

∙ Variational inference

deals with intractability of MLE by optimizing a lower bound

∙ Variational auto-encoder

uses neural nets to represent q𝜑(z | |x) and p𝜃(x | z) in variational
inference
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