
Reinforcement Learning

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 20



Recall: Reinforcement Learning

∙ In reinforcement learning, the agent learns how to act in an
unknown environment by interacting with the environment.

∙ At time t, the agent executes an action at , and the environment
provides its state st and a reward rt as the feedback.

Agent

Environment

atst ,rt

∙ The goal is to learn a policy (mapping from state to action) that
maximizes the expected rewards.

∙ Reinforcement learning is hard because the feedback is limited and
rewards may be delayed.

2 / 20



Stochastic Environments

∙ In real world, the agent is often interacting with a stochastic
environment.
∙ Examples of decision making under uncertainty

How to trade stocks?
How much of a fish population can be harvested?
When do we need to inspect/repair an equipment?

∙ Two key aspects

what information is availalbe to the agent: partially observable or
fully observable.
how the environment evolve: deterministically, or stochastically;
Markovian, or non-Markovian.

3 / 20



Markov Decision Processes (MDPs)

∙ MDPs provide a general mathematical framework for modelling
how an agent interact with a stochastic environment.

∙ The environment is assumed to be fully observable, i.e., the agent
observes all relevant information about the environment.

∙ The environment is assumed to follow the Markov assumption: all
relevant past information is encapsulated in the current state.

4 / 20



Mathematical formulation

∙ In an MDP (p0,S ,A,T ,R), at time step t
the environment is in a state st from a state space S ,

st provides all the relevant information about the environment

the agent takes an action at from an action space A,
then the environment’s state stochastically transits to a new state
st+1 with probability given by the transition function T (st+1 | st , at),
and the agent receives a reward rt = R(st , at) (R is called the
reward function).

∙ We also assume there is an initial state distribution p0(s0).

(diagram on paper)

5 / 20



Horizon

∙ Finite horizon problem: the agent interact with the environment for
finitely many steps.

∙ Infinite horizon problem: the agent interact with the environment
for infinitely many steps.

6 / 20



Policy

∙ We assume that each time step, the agent makes decision based on
current state only – this is formulated as a policy.

∙ A stochastic policy 𝜋(at | st) gives the probability that the agent
takes action at in state st .

∙ A deterministic policy maps a state to an action (this is a special
stochastic policy).

7 / 20



Value function

∙ If an agent collects a sequence of rewards r0, r1, . . . ,, the total
discounted reward with a discount factor 𝛾 ∈ (0, 1) is

r0 + 𝛾r1 + 𝛾2r2 + . . .

This can be used to measure performance of an agent in both the
finite horizon and infinite horizon cases.A
Large 𝛾: farsighted; small 𝛾: myopic

∙ For a finite horizon problem with horizon T , we also use the total
undiscounted reward r0 + . . .+ rT−1.

∙ We focus on the infinite horizon case with a discount factor 𝛾 in
the remainder of this lecture.

8 / 20



∙ For a stochastic policy 𝜋, its value function V𝜋(s) is its total
discounted reward when starting from state s, i.e.

V𝜋(s) = E(
∞∑︁
t=0

𝛾trt | s0 = s, 𝜋).

∙ This can be thought of the average total discounted reward
obtained by running 𝜋 infinitely many times.

∙ Another useful concept is the action-value function Q𝜋(s, a),
defined as

Q𝜋(s, a) = E(
∞∑︁
t=0

𝛾trt | s0 = s, a0 = a, 𝜋).

9 / 20



Optimal policy

∙ The optimal policy 𝜋* is a policy 𝜋 that maximizes the expected
total discounted reward, ∑︁

s

p0(s)V𝜋(s)

Note that there may be multiple optimal policies.

∙ The optimal value function V * is the value function of an optimal
policy.

10 / 20



Two problems

∙ We focus on two problems for a known MDP in this lecture

Policy evaluation: compute the value function for a given policy
Control/planning: compute the optimal policy

11 / 20



Example. Rescue Robot

∙ A medical robot is at the top left corner of a 2x2 grid world, and is
trying to rescue a patient at the bottom right corner.

∙ The robot can move left, right, up, down with a cost of -1. It can
execute a rescue action once to the patient with a reward 100
when it’s in the same location as the patient, otherwise there is a
penalty of -100 for executing a rescue action.

∙ If the robot enters the other two cells, it gets stuck in a traffic jam,
such that each movement action has no effect with probability 0.2
at the top right corner, and 0.5 at the bottom left corner.

12 / 20



Questions

∙ What are the states?

∙ What are the actions?

∙ What is the transition function?

∙ What is the reward function?

∙ What is an optimal policy?

13 / 20



∙ States: state = robot position + whether rescue applied to patient

S = {(r , c, b) : (r , c) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, b ∈ {T ,F}}

(0, 0) (0, 1)

(1, 0) (1, 1)

∙ Actions A = {L,R,U,D, rescue}
∙ Transitions

(0, 0,F ),R → (0, 1,F ) w.p. 1

(0, 0,F ), L → (0, 0,F ) w.p. 1

(0, 1,F ),D → (1, 1,F ) w.p. 0.8 and (0, 1,F ) w.p. 0.2

...

∙ Reward function

R(s, a) = −1 for all s and a ∈ {L,R,U,D}

R(s, rescue) =

{︃
100, if s = (1, 1,F ),

−100, otherwise.
.

∙ Optimal policy: R, repeat D until successful, rescue.

14 / 20



Dynamic Programming

∙ It is not practical to compute the value function of a given policy 𝜋
by running numerous simulations.

∙ Bellman equations provide the basis for dynamic programming
algorithms for both the policy evaluation problem and the
control/planning problem.

15 / 20



Bellman equation and iterative policy evaluation

∙ For a policy 𝜋, its value function V𝜋 satisfies the Bellman equation

V𝜋(s) =
∑︁
a

𝜋(a | s)

(︃∑︁
s′

T (s ′ | s, a)
(︀
R(s, a) + 𝛾V𝜋(s

′)
)︀)︃

∙ If we define an operator H𝜋 : RS → RS by

H(V )(s)
def
=
∑︁
a

𝜋(a | s)

(︃∑︁
s′

T (s ′ | s, a)
(︀
R(s, a) + 𝛾V (s ′)

)︀)︃
,

then V𝜋 is the fixed point of H𝜋, i.e.

V𝜋 = H(V𝜋).

∙ If we choose an arbitrary V0, and Vt+1 = H𝜋(Vt), then Vt converges to V𝜋.

16 / 20



Algorithm 1 Iterative Policy Evaluation for estimating V ≈ V𝜋

1: Initialize V0 ◁ often set to 0 if no good estimates available
2: for t = 1 to T do
3: Vt ← H𝜋(Vt−1) ◁ improve estimates using Bellman operator
4: V ← Vt ◁ use V to remember most recent estimates
5: Terminate if ‖Vt − Vt−1‖∞ < 𝜖

17 / 20



Bellman optimality equation and value iteration

∙ The optimal value function V * satisfies the Bellman optimality equation

V *(s) = max
a

(︃∑︁
s′

T (s ′ | s, a)
(︀
R(s, a) + 𝛾V *(s ′)

)︀)︃
.

∙ If we define an operator H : RS → RS by

H(V )(s)
def
= max

a

(︃∑︁
s′

T (s ′ | s, a)
(︀
R(s, a) + 𝛾V (s ′)

)︀)︃
,

then V * is the fixed point of H, i.e.

V * = H(V *).

∙ If we choose an arbitrary V0, and Vt+1 = H(Vt), then Vt converges to V *.

18 / 20



Algorithm 2 The Value Iteration algorithm for computing 𝜋 ≈ 𝜋*

1: Initialize V0 ◁ often set to 0 if no good estimates available
2: for t = 1 to T do
3: Vt ← H(Vt−1) ◁ improve estimates using Bellman operator
4: V ← Vt ◁ use V to remember most recent estimates
5: Terminate if ‖Vt − Vt−1‖∞ < 𝜖

6: 𝜋(s) = argmaxa (R(s, a) + 𝛾
∑︀

s′ T (s ′ | s, a)V (s ′)).

19 / 20



What You Need to Know

∙ MDP: a decision making model for fully observable stochastic
environments
∙ Dynamic programming

Bellman equation for V𝜋 and iterative policy evaluation
Bellman optimality equation and value iteration for computing V *

and 𝜋*

20 / 20


