
Reinforcement Learning (cont.)

Nan Ye

School of Mathematics and Physics
The University of Queensland

1 / 24

Reinforcement Learning

Planning vs Reinforcement Learning

∙ Planning

an MDP model is given for the environment,
we need to solve the MDP to find an optimal policy.

∙ Reinforcement learning (RL)

the MDP is only partially known, but interaction with the
environment is allowed,
we want to find an optimal policy using as few interactions and as
little computational resources as possible

2 / 24

planning

I know I’ll get stuck in a
traffic jam w.p. 0.2 if I go
right, w.p. 0.5 if I go down

RL
Hmm, which route is more
likely to have a traffic jam?
I’ll try it out...

w.p. = with probability

3 / 24

RL examples in life

∙ Shopping: we try several sellers first, then we’ll stick to the one
which we have best experience with.

∙ This also happens when we find our favourite authors, singers,
sports, ...

4 / 24

General form of an RL algorithm

∙ An RL algorithm generally iterates between the following two steps

execute a behavior policy to interact with the environment and
collect experience
learn from experience

∙ The behavior policy may be some fixed policy or may evolve as we
have more experience.

this is an important design decision in RL algorithms
involves exploration-exploitation tradeoff (next slide)

∙ The learning step may directly learn a target policy 𝜋 or indirectly
learn it by learning its value function (or action-value function).

5 / 24

Exploration-exploitation Tradeoff

∙ When we interact with the environment in RL, how should we act?

∙ We can explore less explored actions to see whether they are more
rewarding.

∙ We can exploit current information to take the best action based
on current information.
∙ Dilemma

too much exploration ⇒ can’t sufficiently exploit actions which are
found to be useful
too much exploitation ⇒ can’t explore unexplored optimal actions

∙ A good behavior policy should balance exploration and exploitation.

6 / 24

RL Approaches

Model-based vs. model-free

∙ Model-based: involves learning the environment model

∙ Model-free: learn an optimal policy without learning the
environment model

Off-policy vs. on-policy

∙ Off-policy: evaluate or improve a non-behavior policy

target policy ̸= behavior policy
experience data is “off” target policy

∙ On-policy: evaluate or improve the behavior policy

target policy = behavior policy
experience data is “on” target policy

7 / 24

Temporal Difference (TD) Methods

∙ TD methods learn value function approximations by performing
updates using current estimates

TD methods are model-free: they directly estimate value functions
without learning a model.
TD methods are bootstrapping methods as the update is partly
based on existing estimates.

∙ We cover an off-policy TD method known as Q-learning, and an
on-policy TD method known as SARSA.

8 / 24

Q-learning

MDPs with finitely many states

∙ Q-learning tries to directly estimate the optimal Q-function by solving the
Bellman optimality equation

Q*(s, a) =
∑︁
s′

T (s ′ | s, a)(R(s, a) + max
a′

Q*(s ′, a′))

∙ Key idea: if we experience a transition (s, a, s ′, r), then we can use it to
perform an update

Q(s, a)← Q(s, a) + 𝛼(

TD target⏞ ⏟
r + 𝛾max

a′
Q(s ′, a′)− Q(s, a))⏟ ⏞

TD

,

where 𝛼 > 0 is the learning rate, s is the current state, and s ′ and r are the
next state and the reward obtained after executing a.

9 / 24

Algorithm 1 Tabular Q-learning

1: Initialise the state-action value function Q
2: while termination condition not met do
3: Execute the behavior policy to obtain a new experience (s, a, s ′, r)
4: Perform TD update for Q using the new experience

Q(s, a)← Q(s, a) + 𝛼(r + 𝛾max
a′

Q(s ′, a′)− Q(s, a)).

∙ Various termination criteria can be used

e.g. little change over recent updates, maximum number of
interaction, maximum computation time

∙ A commonly used behavior policy is the 𝜖-greedy policy, which executes a
random action w.p. 𝜖 > 0, and the greedy action argmaxa Q(s, a) w.p. 1− 𝜖.

10 / 24

∙ Q-learning is an off-policy algorithm. Why?

The (implicit) target is the optimal policy, but the experience comes
from a (non-optimal) behavior policy.
However, the experience s, a, r , s ′ is not generated by the optimal
policy ⇒ it is “off” the target policy.
To learn from the off-policy data, we update using an imagined
experience s, a, r , s ′, a*, where a* = argmaxa′ Q(s ′, a′).

▶ We use the current Q to help us imagine how the optimal policy
would behave when adding a*.

11 / 24

MDPs with infinitely many states

∙ If we have infinitely many states, we can’t use a table to store the
Q-function.

∙ Typically, we use a parametric representation Q𝜃(s, a) in this case.

∙ The update step in the Q-learning algorithm becomes

𝜃 ← 𝜃 − 𝛼(Q𝜃(s, a)− r − 𝛾max
a′

Q𝜃(s
′, a′))∇Q𝜃(s, a).

Why? This performs a gradient descent on the squared TD error

(Q𝜃(s, a)− r − 𝛾max
a′

Q𝜃−(s
′, a′))2,

where 𝜃− = 𝜃 is treated as fixed parameters.

12 / 24

Deep Q-Networks (DQN) for Atari

Games

Key ideas

∙ A deep CNN approximation Q𝜃(s, a)

state consists of the last 4 frames, and Q𝜃 is a CNN that takes in a
preprocessed representation 𝜑(s), and outputs the action
probabilities.

∙ Experience replay

instead of using current observed transition to update model, use a
randomly sampled minibatch from the experience memory

∙ Separate target Q-network

A separate Q-network Q𝜃− is used to compute the TD target, and
Q𝜃− is updated to Q𝜃 after a given number of steps

Mnih et al., Human-level control through deep reinforcement learning, 2015

13 / 24

A schematic illustration of a CNN for Q𝜃

Architecture for Q𝜃 in (Mnih et al., 2015)

∙ Input: 84× 84× 4 stack of last 4 frames (after an RGB-to-gray conversion and scaling)

∙ 1st hidden layer: Conv(8x8, 32, S=4) + ReLU

∙ 2nd hidden layer: Conv(4x4, 32, S=2) + ReLU

∙ 3rd hidden layer: Conv(3x3, 64, S=1) + ReLU

∙ 4th hidden layer: FC-512 + ReLU

∙ output layer: softmax over actions

14 / 24

Algorithm 2 DQN
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 𝜃
Initialize target action-value function Q with weights 𝜃− = 𝜃
for episode=1 to M do

Initialize sequence s1 = {x1} and preprocessed sequence 𝜑1 = 𝜑(s1).
for t = 1 to T do

Select at randomly w.p. 𝜖 and as argmaxa Q𝜃(𝜑(st), a) w.p. 1− 𝜖
Execute at in emulator and observe reward rt and image xt+1

Set st+1 = st , at , xt+1 and preprocess 𝜑t+1 = 𝜑(st+1)
Store transition (𝜑t , at , rt , 𝜑t+1) in D
Sample random minibatch of transitions {(𝜑j , aj , rj , 𝜑j+1) : j ∈ J} from D

For j ∈ J, set yj =

{︃
rj , if episode terminates at step j + 1,

rj + 𝛾maxa′ Q𝜃− (𝜑j+1, a
′), otherwise.

.

Perform a gradient descent step on 1
|J|

∑︀
j∈J(yj − Q𝜃(𝜑j , aj))

2 wrt 𝜃.

Set 𝜃− = 𝜃 if t is a multiple of C

15 / 24

SARSA

∙ Q-learning is an off-policy model-free RL algorithm.

∙ SARSA is an on-policy variant of Q-learning.

∙ It is the same as Q-learning, except that for each update, it first
observes a sequence s, a, r , s ′, a′ (that’s why the name SARSA),
then update

Q(s, a)← Q(s, a) + 𝛼(r + 𝛾Q(s ′, a′)− Q(s, a)).

16 / 24

∙ Why is SARSA on-policy?

q = r + 𝛾Q(s ′, a′) is a bootstrap estimate of the behavior policy’s
value Q(s, a) using its experience s, a, r , s ′, a′.
The update aims to provide an improved estimate using the convex
combination 𝛼q + (1− 𝛼)Q(s, a).
Thus we are using the behavior policy’s experience to improve itself.

∙ If the behavior policy is a fixed policy 𝜋, Q would converge to Q𝜋,
thus we can use the algorithm for policy evaluation.

17 / 24

REINFORCE

∙ Q-learning and SARSA learn value function approximations, but we
can also directly learn a policy.

∙ REINFORCE tries to directly optimise a parametric policy 𝜋𝜃(a | s)
by maximizing its value function

V (𝜃) =
∑︁
𝜏

p(𝜏 | 𝜃)R(𝜏) = E𝜏∼p R(𝜏),

where

𝜏 = (s1, a1, s2, a2, . . .) is a trajectory (state-action sequence),
p(𝜏 | 𝜃) is the distribution of trajectory 𝜏 when playing 𝜋𝜃, and
R(𝜏) is the total (discounted) reward collected along 𝜏 .

∙ It computes a stochastic gradient of V (𝜃) at each iteration, and
then performs gradient ascent.

18 / 24

∙ Usually, it is often computationally intractable to evaluate V (𝜃)
first, and then evaluate its gradient,

in the discrete state case, V (𝜃) involves summing over a large
number of trajectories.
in the continuous state case, computing V (𝜃) involves evaluating a
complex integral.

19 / 24

A stochastic gradient

∙ REINFORCE uses the following important observation

∇V (𝜃) = E𝜏∼p R(𝜏)∇ ln p(𝜏 | 𝜃).

Why? Because ∇ ln p(𝜏 | 𝜃) = ∇ p(𝜏 |𝜃)
p(𝜏 |𝜃) .

∙ This gives us a Monte Carlo estimate of the gradient

∇V (𝜃) ≈ 1

N

N∑︁
i=1

R(𝜏 (i))∇ ln p(𝜏 (i) | 𝜃),

where the trajectories 𝜏 (1), . . . , 𝜏 (N) are randomly sampled from
p(· | 𝜃).
∙ We need to relate ∇ ln p(𝜏 | 𝜃) back to the policy 𝜋𝜃.

20 / 24

∙ Note that

p(𝜏 | 𝜃) = p(s1)

|𝜏 |∏︁
t=1

𝜋(at | st , 𝜃)p(st+1 | st , at),

where |𝜏 | denotes the length of a trajectory (number of
state-action pairs).

∙ While p(𝜏 (i) | 𝜃) depends on the transition probabilities, the
gradient of the log probability does not,

∇ ln p(𝜏 (i) | 𝜃) =
|𝜏i |∑︁
t=1

∇ ln𝜋𝜃(a
(i)
t | s

(i)
t).

21 / 24

Putting things together

∙ REINFORCE repeatedly improves V (𝜃) as follows

Simulate 𝜋𝜃 to collect trajectories 𝜏 (1), . . . , 𝜏 (N).
Update 𝜃 using

𝜃 ← 𝜃 + 𝛼

⎛⎝ 1

N

N∑︁
i=1

R(𝜏 (i))

⎛⎝|𝜏 (i)|∑︁
t=1

∇ ln𝜋𝜃(a
(i)
t | s

(i)
t)

⎞⎠⎞⎠ .

REINFORCE is an on-policy method.

22 / 24

More RL Algorithms

∙ Value function fitting methods
estimate value function or Q-function of the optimal policy
e.g. temporal difference learning (SARSA, Q-learning, DQN), fitted value
iteration

∙ Policy gradient methods
use gradient-based method to maximize the value of a policy
e.g. REINFORCE, TRPO (trust region policy optimization), PPO

∙ Actor-critic algorithms
estimate value function or Q-function of current policy, use it to imporve policy
e.g. A3C (asynchronous advantage actor-critic), SAC (soft actor-critic)

∙ Model-based RL algorithms
estimate an environment model for policy learning
e.g. Dyna, guided policy search

23 / 24

What You Need to Know

∙ Reinforcement learning

algorithm: exploration using a behavior policy + update on the
target policy
exploration-exploitation tradeoff

∙ Approaches: model-based vs model-free, off-policy vs on-policy

∙ Temporal different learning: Q-learning, DQN, SARSA

∙ Policy gradient methods: REINFORCE

24 / 24

