Review

Nan Ye

School of Mathematics and Physics The University of Queensland

A Much Sought-after Technology

Jobs in Al and machine learning are exploding, as countries race to develop the emerging technology, according to a UiPath report.

By Stephen Zafarino, Contributor, CIO JULY 27, 2018 06:30 AM PT Opinions expressed by ICN authors are their own.
outlook for machine learning in tech: ML and Al Is in high demand

22,034 views | Mar 17, 2019, 10:35am

Machine Learning Engineer Is The Best Job In The U.S. According To Indeed

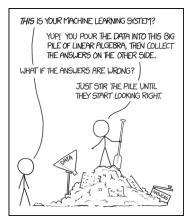
Good News for Job Seekers With <u>Machine Learning</u> Skills: There is a Shortage of Talent

A short pool of Al-trained job seekers has slowed down hiring and impeded growth at some companies

Stacy Stanford in Data Driven Investor Follow Oct 20, 2018 · 7 min read *

Course Objectives

Learn basic theories, algorithms and models of machine/deep learning and be able to apply them.


- Understand and explain the intuition, ideas and theory of deep learning algorithms and models.
- Assess whether a deep learning algorithm is effective and appropriate for an application.
- Propose suitable deep learning solutions and implement them for real world problems.
- Effectively explain deep learning solutions in the form of oral presentations and reports.

Have fun...

Machine Learning

- Machine learning is about problem solving with data.
- We only see some examples, but need to find something that works on new examples.
- Typically formulated as optimizing an unknown expected performance measure.
- We often optimize a performance measure estimated using data.

How to Apply Machine Learning Well

https://xkcd.com/1838/

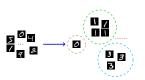
- There is no simple recipe for making machine learning work
- Bad practice
 - Treat learning algorithms as a blackbox for turning data into answers to your question.
- Good practice
 - Understand the domain
 - what information is useful and need to be captured?
 - can you solve the problem yourself?
 - Understand the algorithms
 - machine learning algorithms are often tricky to debug, and you need good understanding of the algorithms when something goes wrong

Building blocks

- Week 1-2: machine learning basics
 - overview, regression, classification, PCA, learning theory, model selection
- Week 3-4: neural network basics
 - Perceptron, Adaline, Hopfield, gradient-based learning, MLPs, autograd and PyTorch
- Week 5-7: deep architectures
 - CNNs, RNNs
- Week 7 8: optimization
 - difficulties, initialization, normalization, adaptive learning rates
- Week 8-11: improving generalization
 - model selection, model averaging, regularization, residual learning, adversarial learning, attention
- Week 11 12: unsupervised learning
 - autoencoders, VAEs, GANs
- Week 12 (17 May 19 May): reinforcement learning
 - MDP, planning, Q-learning, SARSA, policy gradient

Machine Learning Basics

Some learning problems


Supervised learning

Semi-supervised learning

• Unsupervised learning

• Reinforcement learning

Regression

- OLS
- Ridge regression
- Basis function method
- Regression function
- Nearest neighbor regression
- Kernel regression

Classification

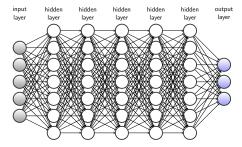
- Decision boundary
- Nearest neighbor
- Naive Bayes
- Logistic regression
- SVMs

Other topics

- Principal component analysis
- Statistical learning theory
- Model selection

Basics of Neural Networks

Perceptron and Adaline


- Simple feedforward networks but works well on simple problems
- A number of important ideas: convergence analysis, stochastic learning, surrogate loss

Hopfield networks

- An interesting class of recurrent neural network
- Conceptually complex as compared to Perceptron and Adaline

MLP

• Deep learning = feature learning + classifier learning

Gradient-based learning

- · Gradients are used to update model parameters
- Gradient computation: numerical gradient, symbolic differentiation, autodiff
- PyTorch

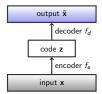
Deep Architectures

CNNs, RNNs, ResNets

- Deep networks are hard to learn
 - complex loss surface, vanishing/exploding gradients
- Structural priors are useful
 - CNNs: local receptive field, shared weights, sub-sampling
 - LSTM: memory cell
 - ResNet: learn residuals

Optimization Tricks

- Initialization: diversity, stability
- Input normalization, batch normalization
- Adaptive learning rates


Improving Generalization

- To improve generalization, we make our optimization problem more similar to optimizing the expected performance.
- This can be done by making changes to the data, objective function, model family.
- Some commonly used methods
 - Model selection
 - Model averaging
 - Regularization: data augmentation, ℓ_1/ℓ_2 regularization, early stopping, dropout.
 - Residual learning
 - Adversarial learning
 - Structural priors (e.g. attention)

Unsupervised learning

Autoencoders

• Using autoencoders for learning data representation/dimension reduction/denoising

Generative modelling

- Variational autoencoders
 - Learns a generative distribution for data via latent variables (autoencoders don't)
 - Can be used to generate examples similar to seen ones
- GAN
 - Generative modelling as a game
 - Generates higher-quality data as compared to VAE

Reinforcement Learning

- Modelling interaction with stochastic environments as an MDP
- Planning: value iteration
- Reinforcement learning: Q-learning, SARSA, policy gradient.

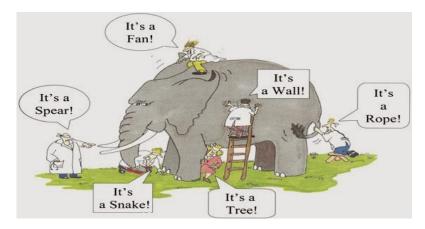
Applications

Agners puzzle						1148	837 Ju
							10.04
And a lot of the lot o	Tarty Tar	-		-	-		
Automatical State					7	0	$\mathcal{I}_{\mathcal{I}}$
And Address of the Ad		1	3	6	ty.		187
Protocological State		÷.	2	1	Tas	14	
	P			1	6	5	
Anna Anna A Sena Sanna A Anna Anna A Anna Anna A	1	Υ.	, i	딇	12	3	
- the part () and advance () Scheme ()	1000		1110	(A.).P. N			

"gibbon" 99.3% confidence

and many others...

Final Remarks


There isn't a single NN recipe that solves all your problems!

Final Remarks

There isn't a single NN recipe that solves all your problems!

- Try traditional ML methods they are good baselines, sometimes working better.
- Exploit NNs' modularity and rich design space to mix-and-match and be creative!
 know the math you may be just one equation away from being creative
- A good solution often involve complex trade-offs
 - amount of data, model complexity, computing power, ...

We still have a lot to know about deep learning!

- Many engineering successes, but theoretical understanding is far from complete.
- Perhaps, you will contribute to the practice and theory of DL/ML/AI?!