STAT3007/7007 Deep Learning, Tutorial 3 2022 Semester 2

1. (Bayes optimal classifier)
(a) If the probabilities that tomorrow will be rainy, sunny, or cloudy are $0.2,0.3$ and 0.5 respectively, what is the weather condition that you will predict to minimize your expected prediction error?
(b) Consider the problem of classifying a real-valued input X to a class $Y \in\{0,1\}$. Suppose the true data distribution $P(X, Y)=P(Y) P(X \mid Y)$ is defined by

$$
\begin{align*}
P(Y=0) & =P(Y=1)=\frac{1}{2} \tag{1}\\
P(X \mid Y=0) & =N(X ; 0,1) \tag{2}\\
P(X \mid Y=1) & =N(X ; 1,1) \tag{3}
\end{align*}
$$

where $N\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$ is the probability density function (PDF) for the normal distribution $N\left(\mu, \sigma^{2}\right)$.
Draw the decision boundary for the Bayes classifier. Justify your answer.
2. (Regression function) We are given a feature vector \mathbf{x}, and we want to predict a real-valued output y. Assume that the conditional distribution $P(Y \mid \mathbf{x})$ is given by

y	0.1	0.2	0.3	0.4	0.5
$P(y \mid \mathbf{x})$	0.1	0.1	0.1	0.2	0.5

(a) What output value $\hat{y} \in \mathbf{R}$ should we predict if we want to minimize the expected quadratic loss $\mathbb{E}_{Y \mid \mathbf{x}}(Y-\hat{y})^{2}$?
(b) What output value $\hat{y} \in \mathbf{R}$ should we predict if we want to minimize the expected ℓ_{1} loss $\mathbb{E}_{Y \mid \mathbf{x}}|Y-\hat{y}|$?

