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1. (Perceptron)

(a) Consider training a perceptron on the training set

(x1, 𝑦1), (x2, 𝑦2), (x3, 𝑦3), (x4, 𝑦4), (x5, 𝑦5), (x6, 𝑦6)

= ((−3, 1),−1), ((−2, 1),−1), ((−1, 1),−1), ((0.1, 1), 1), ((0.2, 1), 1), ((0.3, 1), 1).

i. Let us choose w0 = 0. Thus initially the perceptron classifies all examples as
negative. Now use the perceptron algorithm with 𝜂 = 1 to update the weights.
How many updates do you need and what is your final weight vector? Show
your working.

ii. Consider the perceptron convergence theorem. If we choose w* = (1, 0). What
is the margin 𝛾? What is the radius 𝑅? What is the upper bound on the number
of updates required for the perceptron algorithm to converge?

(b) Consider a dataset (x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛) ∈ R𝑑+1 × {−1,+1}. In lecture, we defined
the margin of a separating hyperplane as the minimum distance of an example to it.

For a separating hyperplane w⊤x = 0, its margin is 𝛾 = min𝑖
𝑦𝑖x

⊤
𝑖 w

‖w‖ .

Note that each x𝑖 is the original 𝑑-dimensional feature vector augmented with a
dummy feature of value 1. We can also put the examples and the hyperplanew⊤x = 0
in the original 𝑑-dimensional feature space, and then compute the margin of the hy-
perplane in this 𝑑-dimensional feature space. Is the margin computed in the original
feature space the same as the one computed in the augmented feature space?

(c) Consider a dataset (x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛) ∈ R𝑑+1 × {−1,+1}.
i. Assume that w and w′ are the normal vectors of two separating hyperplanes for

the dataset. Show that for any 𝜆 ∈ [0, 1], 𝜆w + (1 − 𝜆)w′ is also the normal
vector of a separating hyperplane.

ii. Assume that w and w′ are the normal vectors of two separating hyperplanes for
the dataset. Is it true that for any 𝜆 ∈ R, 𝜆w+(1−𝜆)w′ is also the normal vector
of a separating hyperplane? If not, find all 𝜆 values such that 𝜆w+ (1− 𝜆)w′ is
also the normal vector of a separating hyperplane?

2. (Adaline) We explained in lecture why Adaline can help to reduce the loss by using the
first-order Taylor series expansion of the loss. Give a similar justification for the logistic
approximation discussed in the lecture.

3. (Hopfield nets) Consider a Hopfield net for storing two patterns a1 = (−1,−1, 1, 1) and
a2 = (1, 1,−1,−1).

(a) How many neurons are there in the Hopfield net? Draw the structure of the network.

(b) What is the weight matrix for the network?
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(c) Assume that we are given a noisy input pattern (−1, 1, 1, 1). To retrieve the stored
pattern, we need to first initialise the activation states of the neurons with their
corresponding values in the given pattern. Perform one iteration of synchronous
updates on all the neurons. What is the updated pattern?

(d) For the input pattern (−1, 1, 1, 1), how many iterations of synchronous updates do
you need until the network converges? What is the final pattern?

(e) Now consider the input pattern (1, 1, 1, 1). Update the neurons in the order 1, 2, 3,
4, 1, 2, 3, 4,... until convergence. What is the final pattern?

(f) Consider the input pattern (1, 1, 1, 1). Update the neurons in the order 4, 3, 2, 1, 4,
3, 2, 1,... until convergence. What is the final pattern? Do you get the same pattern
as (f)?
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