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Quiz
Q1. Which dataset is linear regression of y against x suitable for?
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Q2. If there is a unique least squares regression line y = 𝛽⊤x on
(x1, y1), . . . , (xn, yn) ∈ Rd × R, what is 𝛽?

(a) (X⊤X)−1X⊤y (b) (XX⊤)−1Xy

(c) X⊤y (d) Xy

where X is the n × d design matrix with xi as the i-th row, and
y = (y1, . . . , yn)

⊤.
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Q3. Suggest possible models for the data shown in the figures.
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(b) Binary
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(c) Cardinal
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(d) Nonnegative continuous

Linear regression

We will study some options in this course!
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Q3. Suggest possible models for the data shown in the figures.
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(b) Binary
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(d) Nonnegative continuous

Linear regression

We will study some options in this course!
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Your Tasks

Assignment 4
14% out 18 Sep, due 12pm 2 Oct

Assignment 5
14% out 2 Oct, due 12pm 16 Oct

Consulting Project
project description + data, out

2.5% half-time check, due 6pm 1 Oct
7.5% seminar, during a lecture in the week of 22 Oct
20% report, due 6pm on 26 Oct

There are bonus questions in lectures and assignments.
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Our Problem

Regression
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Course Objective

∙ Understand the general theory of generalized linear models

model structure, parameter estimation, asymptotic normality,
prediction

∙ Be able to recognize and apply generalized linear models and
extensions for regression on different types of data

∙ Be able to determine the goodness of fit and the prediction quality
of a model

Put it simply, to be able to do regression using generalized linear models

and extensions...
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Course Overview

Generalized linear models (GLMs)

∙ Building blocks
systematic and random components, exponential familes

∙ Prediction and parameter estimation

∙ Specific models for different types of data
continuous response, binary response, count response...

∙ Modelling process and model diagnostics

Extensions of GLMs

∙ Quasi-likelihood models

∙ Nonparametric models

∙ Mixed models and marginal models

Time series
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This Lecture

∙ Revisit basics of OLS

∙ Systematic and random components of OLS

∙ Extensions of OLS to other types of data

∙ A glimpse on generalized linear models

9 / 20



Revisiting OLS

The objective function

Ordinary least squares (OLS) finds a hyperplane minimizing the
sum of squared errors (SSE)

𝛽n = arg min
𝛽∈Rd

n∑︁
i=1

(x⊤i 𝛽 − yi )
2,

where each xi ∈ Rd and each yi ∈ R.

Terminology

x: input, independent variables, covariate vector, observation, predictors,
explanatory variables, features.

y : output, dependent variable, response.
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Solution

The solution to OLS is

𝛽n = (X⊤X)−1X⊤y,

where X is the n × d design matrix with xi as the i-th row, and
y = (y1, . . . , yn)

⊤.

The formula holds when X⊤X is non-singular. When X⊤X is singular, there are

infinitely many possible values for 𝛽n. They can be obtained by solving the

linear systems (X⊤X)𝛽 = X⊤y.
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Justification as MLE

∙ Assumption: yi | xi
ind∼ N(x⊤i 𝛽, 𝜎

2).

∙ Derivation: the log-likelihood of 𝛽 is given by

ln p(y1, . . . , yn | x1, . . . , xn, 𝛽)

=
∑︁
i

ln p(yi | xi , 𝛽)

=
∑︁
i

ln

(︂
1√
2𝜋𝜎

exp(−(yi − x⊤𝛽)2/2𝜎2)

)︂
= const.− 1

𝜎2

∑︁
i

(yi − x⊤i 𝛽)
2.

Thus minimizing the SSE is the same as maximizing the
log-likelihood, i.e. maximum likelihood estimation (MLE).
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An Alternative View

∙ OLS has two orthogonal components

(systematic) E(Y | x) = 𝛽⊤x.

(random) Y | x is normally distributed with variance 𝜎2.

∙ This has two key features
∙ Expected value of Y given x is a function of 𝛽⊤x.
∙ Parameters of the conditional distribution of Y given x can be

determined from E(Y | x).
∙ This defines a conditional distribution p(y | x, 𝛽), with parameters

estimated using MLE.
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Generalization

(systematic) E(Y | x) = g(𝛽⊤x).

(random) Y | x is normally/Poisson/Bernoulli/... distributed.
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Example 1. Logistic regression for binary response

∙ When Y takes value 0 or 1, we can use the logistic function to
squash x⊤𝛽 to [0, 1], and use the Bernoulli distribution to model
Y | x, as follows.

(systematic) E(Y | x) = logistic(𝛽⊤x) =
1

1 + e−𝛽⊤x
.

(random) Y | x is Bernoulli distributed.

∙ Or more compactly,

Y | x ∼ B

(︂
1

1 + e−𝛽⊤x

)︂
,

where B(p) is the Bernoulli distribution with parameter p.
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Example 2. Poisson regression for count response

∙ When Y is a count, we can use exponentiation to map 𝛽⊤x to a
non-negative value, and use the Poisson distribution to model
Y | x, as follows.

(systematic) E(Y | x) = exp(𝛽⊤x).

(random) Y | x is Poisson distributed.

∙ Or more compactly,

Y | x ∼ Po
(︁
exp(𝛽⊤x)

)︁
,

where Po(𝜆) is a Poisson distribution with parameter 𝜆.
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Example 3. Gamma regression for non-negative response

∙ When Y is a non-negative continuous random variable, we can
choose the systematic and random components as follows.

(systematic) E(Y | x) = exp(𝛽⊤x)

(random) Y | x is Gamma distributed.

∙ We further assume the variance of the Gamma distribution is 𝜇2/𝜈
(𝜈 treated as known), thus

Y | x ∼ Γ(𝜇 = exp(𝛽⊤x), var = 𝜇2/𝜈),

where Γ(𝜇 = a, var = b) denotes a Gamma distribution with mean
a and variance b.
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Generalized Linear Models

∙ A GLM has the following structure

(systematic) E(Y | x) = h(𝛽⊤x).

(random) Y | x follows an exponential family distribution.

∙ This is usually separated into three components
∙ The linear predictor 𝛽⊤x.
∙ The response function h.

People often specify the link function g = h−1 instead.
∙ The exponential family for the conditional distribution of Y given x.
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Remarks on the exponential family

∙ It is common!

normal, Bernoulli, Poisson, and Gamma distributions are exponential
families.

∙ It gives a well-defined model.

its parameters are determined by the mean 𝜇 = E(Y | x).
∙ It leads to a unified treatment of many different models.

linear regression, logistic regression, ...

We will take a close look at these in the next few lectures.
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What You Need to Know

∙ The approach of regression by separately specifying systematic and
random components.

∙ Example applications of the approach
∙ Linear regression, logistic regression, Poisson regression, Gamma

regression

∙ The components of generalized linear models
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