# Lecture 1. From Linear Regression 

Nan Ye

School of Mathematics and Physics
University of Queensland

## Quiz

Q1. Which dataset is linear regression of $y$ against $x$ suitable for?


Q2. If there is a unique least squares regression line $y=\beta^{\top} \mathbf{x}$ on $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) \in \mathbf{R}^{d} \times \mathbf{R}$, what is $\beta$ ?
(a) $\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$
(b) $\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X} \mathbf{y}$
(c) $\mathbf{X}^{\top} \mathbf{y}$
(d) $X y$
where $\mathbf{X}$ is the $n \times d$ design matrix with $\mathbf{x}_{i}$ as the $i$-th row, and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{\top}$.


Q3. Suggest possible models for the data shown in the figures.


Q3. Suggest possible models for the data shown in the figures.



## Your Tasks

Assignment 4
$14 \%$ out 18 Sep, due 12 pm 2 Oct

Assignment 5
$14 \%$ out 2 Oct, due 12 pm 16 Oct

Consulting Project
project description + data, out
2.5\% half-time check, due 6pm 1 Oct
$7.5 \%$ seminar, during a lecture in the week of 22 Oct $20 \%$ report, due 6 pm on 26 Oct

There are bonus questions in lectures and assignments.

## Our Problem

## Regression

## Course Objective

- Understand the general theory of generalized linear models model structure, parameter estimation, asymptotic normality, prediction
- Be able to recognize and apply generalized linear models and extensions for regression on different types of data
- Be able to determine the goodness of fit and the prediction quality of a model

Put it simply, to be able to do regression using generalized linear models and extensions...

## Course Overview

## Generalized linear models (GLMs)

- Building blocks systematic and random components, exponential familes
- Prediction and parameter estimation
- Specific models for different types of data continuous response, binary response, count response...
- Modelling process and model diagnostics


## Extensions of GLMs

- Quasi-likelihood models
- Nonparametric models
- Mixed models and marginal models


## Time series

## This Lecture

- Revisit basics of OLS
- Systematic and random components of OLS
- Extensions of OLS to other types of data
- A glimpse on generalized linear models


## Revisiting OLS

The objective function
Ordinary least squares (OLS) finds a hyperplane minimizing the sum of squared errors (SSE)

$$
\beta_{n}=\arg \min _{\beta \in \mathbf{R}^{d}} \sum_{i=1}^{n}\left(\mathbf{x}_{i}^{\top} \beta-y_{i}\right)^{2},
$$

where each $\mathbf{x}_{i} \in \mathbf{R}^{d}$ and each $y_{i} \in \mathbf{R}$.

Terminology
x: input, independent variables, covariate vector, observation, predictors, explanatory variables, features.
$y$ : output, dependent variable, response.

## Solution

The solution to OLS is

$$
\beta_{n}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

where $\mathbf{X}$ is the $n \times d$ design matrix with $\mathbf{x}_{i}$ as the $i$-th row, and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{\top}$.

The formula holds when $\mathbf{X}^{\top} \mathbf{X}$ is non-singular. When $\mathbf{X}^{\top} \mathbf{X}$ is singular, there are infinitely many possible values for $\beta_{n}$. They can be obtained by solving the linear systems $\left(\mathbf{X}^{\top} \mathbf{X}\right) \beta=\mathbf{X}^{\top} \mathbf{y}$.

## Justification as MLE

- Assumption: $y_{i} \mid \mathbf{x}_{i} \stackrel{\text { ind }}{\sim} N\left(\mathbf{x}_{i}^{\top} \beta, \sigma^{2}\right)$.
- Derivation: the log-likelihood of $\beta$ is given by

$$
\begin{aligned}
& \ln p\left(y_{1}, \ldots, y_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \beta\right) \\
= & \sum_{i} \ln p\left(y_{i} \mid \mathbf{x}_{i}, \beta\right) \\
= & \sum_{i} \ln \left(\frac{1}{\sqrt{2 \pi \sigma}} \exp \left(-\left(y_{i}-\mathbf{x}^{\top} \beta\right)^{2} / 2 \sigma^{2}\right)\right) \\
= & \text { const. }-\frac{1}{\sigma^{2}} \sum_{i}\left(y_{i}-\mathbf{x}_{i}^{\top} \beta\right)^{2} .
\end{aligned}
$$

Thus minimizing the SSE is the same as maximizing the log-likelihood, i.e. maximum likelihood estimation (MLE).

## An Alternative View

- OLS has two orthogonal components

$$
\text { (systematic) } \quad \mathbb{E}(Y \mid \mathbf{x})=\beta^{\top} \mathbf{x}
$$

(random) $\quad Y \mid \mathbf{x}$ is normally distributed with variance $\sigma^{2}$.

- This has two key features
- Expected value of $Y$ given $\mathbf{x}$ is a function of $\beta^{\top} \mathbf{x}$.
- Parameters of the conditional distribution of $Y$ given $\mathbf{x}$ can be determined from $\mathbb{E}(Y \mid \mathbf{x})$.
- This defines a conditional distribution $p(y \mid \mathbf{x}, \beta)$, with parameters estimated using MLE.


## Generalization

(systematic) $\quad \mathbb{E}(Y \mid \mathbf{x})=g\left(\beta^{\top} \mathbf{x}\right)$.
(random) $\quad Y \mid \mathbf{x}$ is normally/Poisson/Bernoulli/... distributed.

## Example 1. Logistic regression for binary response

- When $Y$ takes value 0 or 1 , we can use the logistic function to squash $\mathbf{x}^{\top} \beta$ to $[0,1]$, and use the Bernoulli distribution to model $Y \mid \mathbf{x}$, as follows.

$$
\begin{aligned}
\text { (systematic) } & \mathbb{E}(Y \mid \mathbf{x})=\operatorname{logistic}\left(\beta^{\top} \mathbf{x}\right)=\frac{1}{1+e^{-\beta^{\top} \mathbf{x}}} \\
\text { (random) } & Y \mid \mathbf{x} \text { is Bernoulli distributed. }
\end{aligned}
$$

- Or more compactly,

$$
Y \left\lvert\, \mathbf{x} \sim B\left(\frac{1}{1+e^{-\beta^{\top} \mathbf{x}}}\right)\right.
$$

where $B(p)$ is the Bernoulli distribution with parameter $p$.

## Example 2. Poisson regression for count response

- When $Y$ is a count, we can use exponentiation to map $\beta^{\top} \mathbf{x}$ to a non-negative value, and use the Poisson distribution to model $Y \mid \mathbf{x}$, as follows.

$$
\begin{aligned}
\text { (systematic) } & \mathbb{E}(Y \mid \mathbf{x})=\exp \left(\beta^{\top} \mathbf{x}\right) \\
\text { (random) } & Y \mid \mathbf{x} \text { is Poisson distributed. }
\end{aligned}
$$

- Or more compactly,

$$
Y \mid \mathbf{x} \sim P_{o}\left(\exp \left(\beta^{\top} \mathbf{x}\right)\right)
$$

where $\operatorname{Po}(\lambda)$ is a Poisson distribution with parameter $\lambda$.

## Example 3. Gamma regression for non-negative response

- When $Y$ is a non-negative continuous random variable, we can choose the systematic and random components as follows.

$$
\begin{aligned}
\text { (systematic) } & \mathbb{E}(Y \mid \mathbf{x})=\exp \left(\beta^{\top} \mathbf{x}\right) \\
\text { (random) } & Y \mid \mathbf{x} \text { is Gamma distributed. }
\end{aligned}
$$

- We further assume the variance of the Gamma distribution is $\mu^{2} / \nu$ ( $\nu$ treated as known), thus

$$
Y \mid \mathbf{x} \sim \Gamma\left(\mu=\exp \left(\beta^{\top} \mathbf{x}\right), \operatorname{var}=\mu^{2} / \nu\right)
$$

where $\Gamma(\mu=a$, var $=b)$ denotes a Gamma distribution with mean $a$ and variance $b$.

## Generalized Linear Models

- A GLM has the following structure
(systematic) $\mathbb{E}(Y \mid \mathbf{x})=h\left(\beta^{\top} \mathbf{x}\right)$.
(random) $Y \mid \mathbf{x}$ follows an exponential family distribution.
- This is usually separated into three components
- The linear predictor $\beta^{\top} \mathbf{x}$.
- The response function $h$.

People often specify the link function $g=h^{-1}$ instead.

- The exponential family for the conditional distribution of $Y$ given $\mathbf{x}$.


## Remarks on the exponential family

- It is common!
normal, Bernoulli, Poisson, and Gamma distributions are exponential families.
- It gives a well-defined model.
its parameters are determined by the mean $\mu=\mathbb{E}(Y \mid \mathbf{x})$.
- It leads to a unified treatment of many different models.
linear regression, logistic regression, ...
We will take a close look at these in the next few lectures.


## What You Need to Know

- The approach of regression by separately specifying systematic and random components.
- Example applications of the approach
- Linear regression, logistic regression, Poisson regression, Gamma regression
- The components of generalized linear models

