Lecture 4. Generalized Linear Models

Nan Ye

School of Mathematics and Physics University of Queensland

Generalized Linear Models

Recall: definition of GLM

• A GLM has the following structure

(systematic) $\mathbb{E}(Y \mid \mathbf{x}) = h(\beta^{\top}\mathbf{x}).$

(random) $Y \mid \mathbf{x}$ follows an exponential family distribution.

- This is usually separated into three components
 - The linear predictor $\beta^{\top} \mathbf{x}$.
 - The response function h.
 People often specify the link function g = h⁻¹ instead.
 - The exponential family for the conditional distribution of Y given x.

Recall: remarks on exponential families

• It is common!

normal, Bernoulli, Poisson, and Gamma distributions are exponential families.

• It gives a well-defined model.

its parameters are determined by the mean $\mu = \mathbb{E}(Y \mid \mathbf{x})$.

• It leads to a unified treatment of many different models. *linear regression, logistic regression, ...*

In a GLM, we consider exponential families with T(y) = y.

Questions

- Given β , how to compute the probability $p(y \mid \mathbf{x}, \beta)$?
- Given β , how to predict the value of y (using mean or mode)?
- Given observed (x₁, y₁),..., (x_n, y_n), how to find the maximum likelihood estimator (MLE) for β?
- How to find a confidence interval for the MLE?

This Lecture

- Computing $p(y | \mathbf{x}, \beta)$
- Fisher scoring method

Evaluating $p(y \mid \mathbf{x}, \beta)$

Example 1. Ordinary linear regression

• Recall: $Y \mid \mathbf{x} \sim N(\mathbf{x}^{\top}\beta, \sigma^2)$.

•
$$p(y \mid \mathbf{x}, \beta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-(y - \mathbf{x}^\top \beta)/2\sigma^2).$$

- σ^2 can be estimated as the variance of the residuals.
- We can predict Y as x^Tβ, which is both the mean and mode of Y given x.

Example 2. Logistic regression

• Recall:
$$Y \mid \mathbf{x} \sim B\left(\frac{1}{1+e^{-\mathbf{x}^{\top}\beta}}\right)$$
.

• After some calculation: $p(y \mid \mathbf{x}, \beta) = \frac{e^{y\mathbf{x}^{\top}\beta}}{1+e^{\mathbf{x}^{\top}\beta}}$.

• We can predict Y as

$$rg\max_{y} p(y \mid \mathbf{x}, eta) = egin{cases} 1, & \mathbf{x}^{ op}eta > 0, \ 0, & \mathbf{x}^{ op}eta \leq 0. \end{cases}$$

A general explicit formula

The idea of going from given β , **x** to the distribution of *y* is shown graphically below

$$\beta$$
, **x** $\xrightarrow{g^{-1}} \mu \xrightarrow{A'^{-1}} \eta \xrightarrow{\text{exp. fam.}} y$

Assume a natural parametrization of the exponential family

$$f(y \mid \eta, \phi) = \exp\left(\frac{\eta T(y) - A(\eta)}{b(\phi)} + c(y, \phi)\right)$$

- Compute the mean $\mu = \mathbb{E}(Y \mid \mathbf{x}) = g^{-1}(\beta^{\top}\mathbf{x}).$
- Compute the natural parameter $\eta = A'^{-1}(\mu)$.
- Thus the probability of y given \mathbf{x} and β is

$$p(y \mid \mathbf{x}, \beta) = \exp\left(\frac{\eta T(y) - A(\eta)}{b(\phi)} + c(y, \phi)\right),$$

where $\eta = A'^{-1}(g^{-1}(\beta^{\top}\mathbf{x})).$

Computing MLE

• We want to choose β to maximize the log-likelihod

$$\ell(\beta) = \sum_{i=1}^{n} \ln p(y_i \mid \mathbf{x}_i, \beta)$$

• We will first cover the Fisher scoring algorithm, a general algorithm for finding MLEs, and then show how it can be applied to GLMs.

Fisher scoring

- An general algorithm for finding an MLE.
- Start with some $\beta^{(0)}$. At iteration $t \ge 0$,

$$\beta^{(t+1)} = \beta^{(t)} + I^{-1}(\beta^{(t)}) \nabla \ell(\beta^{(t)}).$$

where $I(\beta) = -\mathbb{E} \nabla^2 \ell(\beta)$ (known as *Fisher information*).

Notation

- ∇ : the gradient operator $(\frac{\partial}{\partial \beta_1}, \ldots, \frac{\partial}{\partial \beta_d})$, as a column vector.
- ∇^{\top} is the transpose of ∇ .
- ∇^2 denotes the Hessian operator, and is $\nabla \nabla^\top$.

Derivation of Fisher scoring

• Consider the Taylor series expansion of $\ell(\beta')$ around β

$$\ell(eta')pprox\ell(eta)+
abla^ op\ell(eta)\cdot(eta'-eta)+rac{1}{2}(eta'-eta)^ op
abla^2\ell(eta)(eta'-eta).$$

where $\nabla \ell(\beta)$ is the gradient, and $\nabla^2 \ell(\beta)$ is the Hessian.

The maximizer of the RHS is given by

$$\beta^* = \beta - (\nabla^2 \ell(\beta))^{-1} \nabla \ell(\beta).$$

• This motivates the update (known as Newton-Raphson method)

$$\beta^{(t+1)} = \beta^{(t)} - (\nabla^2 \, \ell(\beta^{(t)}))^{-1} \, \nabla \, \ell(\beta^{(t)}).$$

• Finally, replace the negative Hessian $-\nabla^2 \ell(\beta)$ by its expectation $I(\beta)$.

What You Need to Know

- The explicit form of a GLM model $p(y | \mathbf{x}, \beta)$.
- Computing MLE using Fisher scoring.