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Generalized Linear Models

Recall: definition of GLM

∙ A GLM has the following structure

(systematic) E(Y | x) = h(𝛽⊤x).

(random) Y | x follows an exponential family distribution.

∙ This is usually separated into three components
∙ The linear predictor 𝛽⊤x.
∙ The response function h.

People often specify the link function g = h−1 instead.
∙ The exponential family for the conditional distribution of Y given x.
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Recall: remarks on exponential families

∙ It is common!

normal, Bernoulli, Poisson, and Gamma distributions are exponential
families.

∙ It gives a well-defined model.

its parameters are determined by the mean 𝜇 = E(Y | x).
∙ It leads to a unified treatment of many different models.

linear regression, logistic regression, ...

In a GLM, we consider exponential families with T (y) = y .
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Questions

∙ Given 𝛽, how to compute the probability p(y | x, 𝛽)?
∙ Given 𝛽, how to predict the value of y (using mean or mode)?

∙ Given observed (x1, y1), . . . , (xn, yn), how to find the maximum
likelihood estimator (MLE) for 𝛽?

∙ How to find a confidence interval for the MLE?
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This Lecture

∙ Computing p(y | x, 𝛽)
∙ Fisher scoring method
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Evaluating p(y | x, 𝛽)

Example 1. Ordinary linear regression

∙ Recall: Y | x ∼ N(x⊤𝛽, 𝜎2).

∙ p(y | x, 𝛽) = 1√
2𝜋𝜎2

exp(−(y − x⊤𝛽)/2𝜎2).

∙ 𝜎2 can be estimated as the variance of the residuals.

∙ We can predict Y as x⊤𝛽, which is both the mean and mode of Y
given x.

6 / 13



Example 2. Logistic regression

∙ Recall: Y | x ∼ B
(︁

1

1+e−x⊤𝛽

)︁
.

∙ After some calculation: p(y | x, 𝛽) = eyx
⊤𝛽

1+ex⊤𝛽
.

∙ We can predict Y as

argmax
y

p(y | x, 𝛽) =

{︃
1, x⊤𝛽 > 0.

0, x⊤𝛽 ≤ 0.
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A general explicit formula

The idea of going from given 𝛽, x to the distribution of y is shown
graphically below

𝛽, x 𝜇 𝜂 y
g−1

A′−1 exp. fam.
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∙ Assume a natural parametrization of the exponential family

f (y | 𝜂, 𝜑) = exp

(︂
𝜂T (y)− A(𝜂)

b(𝜑)
+ c(y , 𝜑)

)︂
∙ Compute the mean 𝜇 = E(Y | x) = g−1(𝛽⊤x).

∙ Compute the natural parameter 𝜂 = A′−1(𝜇).

∙ Thus the probability of y given x and 𝛽 is

p(y | x, 𝛽) = exp

(︂
𝜂T (y)− A(𝜂)

b(𝜑)
+ c(y , 𝜑)

)︂
,

where 𝜂 = A′−1(g−1(𝛽⊤x)).
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Computing MLE

∙ We want to choose 𝛽 to maximize the log-likelihod

ℓ(𝛽) =
n∑︁

i=1

ln p(yi | xi , 𝛽)

∙ We will first cover the Fisher scoring algorithm, a general algorithm
for finding MLEs, and then show how it can be applied to GLMs.
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Fisher scoring

∙ An general algorithm for finding an MLE.

∙ Start with some 𝛽(0). At iteration t ≥ 0,

𝛽(t+1) = 𝛽(t) + I−1(𝛽(t))∇ ℓ(𝛽(t)).

where I (𝛽) = −E∇2 ℓ(𝛽) (known as Fisher information).

Notation

∙ ∇: the gradient operator ( 𝜕
𝜕𝛽1

, . . . , 𝜕
𝜕𝛽d

), as a column vector.

∙ ∇⊤ is the transpose of ∇.

∙ ∇2 denotes the Hessian operator, and is ∇∇⊤.
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Derivation of Fisher scoring

∙ Consider the Taylor series expansion of ℓ(𝛽′) around 𝛽

ℓ(𝛽′) ≈ ℓ(𝛽) +∇⊤ ℓ(𝛽) · (𝛽′ − 𝛽) +
1

2
(𝛽′ − 𝛽)⊤∇2 ℓ(𝛽)(𝛽′ − 𝛽).

where ∇ ℓ(𝛽) is the gradient, and ∇2 ℓ(𝛽) is the Hessian.

∙ The maximizer of the RHS is given by

𝛽* = 𝛽 − (∇2 ℓ(𝛽))−1∇ ℓ(𝛽).

∙ This motivates the update (known as Newton-Raphson method)

𝛽(t+1) = 𝛽(t) − (∇2 ℓ(𝛽(t)))−1∇ ℓ(𝛽(t)).

∙ Finally, replace the negative Hessian −∇2 ℓ(𝛽) by its expectation
I (𝛽).
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What You Need to Know

∙ The explicit form of a GLM model p(y | x, 𝛽).
∙ Computing MLE using Fisher scoring.
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