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Generalized Linear Models

Recall: definition of GLM
e A GLM has the following structure

(systematic) E(Y | x) = h(3"x).
(random) Y | x follows an exponential family distribution.

e This is usually separated into three components

e The linear predictor 57 x.
e The response function h.
People often specify the link function g = h™" instead.
e The exponential family for the conditional distribution of Y given x.
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Recall: remarks on exponential families

e [t is commonl!

normal, Bernoulli, Poisson, and Gamma distributions are exponential
families.

e It gives a well-defined model.
its parameters are determined by the mean pn = E(Y | x).
e |t leads to a unified treatment of many different models.

linear regression, logistic regression, ...

In a GLM, we consider exponential families with T(y) = y.
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Questions

Given 3, how to compute the probability p(y | x, 3)?
Given 3, how to predict the value of y (using mean or mode)?

Given observed (x1,¥1),.-.,(Xn, ¥n), how to find the maximum
likelihood estimator (MLE) for 37

How to find a confidence interval for the MLE?

4/13



This Lecture

e Computing p(y | x, 3)
e Fisher scoring method
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Evaluating p(y | x, )

Example 1. Ordinary linear regression
e Recall: Y |x~ N(x'3,0?).
1 (0 T 2
° p(y|x,B)= Wexp( (y —x'B)/207).
e o2 can be estimated as the variance of the residuals.

e We can predict Y as x' 3, which is both the mean and mode of Y
given Xx.
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Example 2. Logistic regression

. 1
e Recall: Y [x~ B (L),
. yx | 8
e After some calculation: p(y | x,3) = £

1+ex B°

e We can predict Y as

1, x'8>0.

argmax p(y | x, §) = {0, T <0.
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A general explicit formula

The idea of going from given (3, x to the distribution of y is shown
graphically below

g A1 exp. fam.
B, x I U
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Assume a natural parametrization of the exponential family

nT(y) —An)
b(¢)

Compute the mean u = E(Y | x) = g71(8"x).
Compute the natural parameter = A"~ (p).

Uy 1.0) = exp )

Thus the probability of y given x and 3 is

nT(y)—An)

ply | x,8) = exr)( b()

+ <y, cb)) ;

where n = A71(g71(3x)).
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Computing MLE

e We want to choose /3 to maximize the log-likelihod

(B) = Inp(yi | xi,5)
i=1

e We will first cover the Fisher scoring algorithm, a general algorithm
for finding MLEs, and then show how it can be applied to GLMs.
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Fisher scoring

e An general algorithm for finding an MLE.
e Start with some 6(0). At iteration t > 0,

B = 5 + 171 (8 v 4(51)).

where /() = —EV2¢(3) (known as Fisher information).

Notation

e V. the gradient operator (+2- a%d), as a column vector.

B
e V' is the transpose of V.

e V? denotes the Hessian operator, and is V v
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Derivation of Fisher scoring

e Consider the Taylor series expansion of ¢(3’) around 3

(B) ~ (B)+ VT UB) - (8~ B)+ 58 — B) V2UB)H — ).

where V £() is the gradient, and V2 £(f3) is the Hessian.
e The maximizer of the RHS is given by

B* =B = (V2UB) TV UB).
e This motivates the update (known as Newton-Raphson method)
B = B — (V2 4(B) T v e(51)).
e Finally, replace the negative Hessian — V2 £(f3) by its expectation

1(8).
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What You Need to Know

e The explicit form of a GLM model p(y | x, 3).
e Computing MLE using Fisher scoring.
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