Lecture 5. Generalized Linear Models (cont.)

Nan Ye

School of Mathematics and Physics University of Queensland

This Lecture

- Fisher scoring for GLM
- Properties of MLE
- GLM with canonical link

Fisher Scoring for GLM

Recall: Fisher scoring

- A general algorithm for finding an MLE.
- Start with some $\beta^{(0)}$. At iteration $t \geq 0$,

$$
\beta^{(t+1)}=\beta^{(t)}+I^{-1}\left(\beta^{(t)}\right) \nabla \ell\left(\beta^{(t)}\right)
$$

where $I(\beta)=-\mathbb{E} \nabla^{2} \ell(\beta)$ (known as Fisher information).

Log-likelihood for GLM

- Given training data $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$, our objective is to maximize the log-likelihood

$$
\ell(\beta)=\sum_{i} \ln p\left(y_{i} \mid \mathbf{x}_{i}, \beta\right)
$$

- Recall: $p(y \mid \mathbf{x}, \beta)$ can be explicitly computed as

$$
p(y \mid \mathbf{x}, \beta)=\exp \left(\frac{\eta y-A(\eta)}{b(\phi)}+c(y, \phi)\right)
$$

where $\eta=A^{\prime-1}\left(g^{-1}\left(\beta^{\top} \mathbf{x}\right)\right)$.
We use the natural statistics here (i.e., we assume $T(y)=y$.).

Fisher scoring for GLM

- Let $\mu_{i}=\mathbb{E}\left(Y_{i} \mid \mathbf{x}_{i}, \beta\right)=g^{-1}\left(\mathbf{x}_{i}^{\top} \beta\right)$ and $V_{i}=\operatorname{var}\left(Y_{i} \mid \mathbf{x}_{i}, \beta\right)$.
- The gradient, or score function, is

$$
\nabla \ell(\beta)=\sum_{i} \frac{y_{i}-\mu_{i}}{g^{\prime}\left(\mu_{i}\right) V_{i}} \mathbf{x}_{i}
$$

- The Fisher information is

$$
I(\beta)=\sum_{i} \frac{1}{g^{\prime}\left(\mu_{i}\right)^{2} V_{i}} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}
$$

No specific parametrization of the exponential family is required. Choose whichever is more convenient for computing the variances.

Interpretation

- Gradient is a linear combination of input \mathbf{x}_{i} 's.

Weight of \mathbf{x}_{i} is

- proportional to $y_{i}-\mu_{i}$ (mean's quality as a predictor),
- inversely proportional to V_{i} (variance of the response),
- proportional to $\frac{1}{g^{\prime}\left(\mu_{i}\right)}=\frac{d \mu_{i}}{d\left(x_{i}^{\top} \beta\right)}$ (rate of change of mean in the linear predictor).
- Fisher information is a linear combination of $\mathbf{x}_{i} \mathbf{x}_{i}^{\top}$'s.

Weight of $\mathbf{x}_{i} \mathbf{x}_{i}^{\top}$ is

- inversely proportional to V_{i},
- proportional to $\frac{1}{g^{\prime}\left(\mu_{i}\right)^{2}}$.

Example 1. Ordinary least squares

- Recall: $Y_{i} \stackrel{i n d}{\sim} N\left(\mathbf{x}_{i}^{\top} \beta, \sigma^{2}\right)$.
- We have $\mu_{i}=\mathbf{x}_{i}^{\top} \beta, V_{i}=\sigma^{2}, g(\mu)=\mu, g^{\prime}(\mu)=1$, thus

$$
\begin{aligned}
\nabla \ell(\beta) & =\sum_{i} \frac{y_{i}-\mathbf{x}_{i}^{\top} \beta}{\sigma^{2}} \mathbf{x}_{i}=\frac{1}{\sigma^{2}}\left(\mathbf{X}^{\top} \mathbf{y}-\mathbf{X}^{\top} \mathbf{X} \beta\right) \\
I(\beta) & =\sum \frac{1}{\sigma^{2}} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}=\frac{1}{\sigma^{2}} \mathbf{X}^{\top} \mathbf{X}
\end{aligned}
$$

where \mathbf{X} is the design matrix.

- For any $\beta^{(0)}$, we have

$$
\begin{aligned}
\beta^{(1)} & =\beta^{(0)}+\left(\frac{1}{\sigma^{2}} \mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left(\frac{1}{\sigma^{2}}\left(\mathbf{X}^{\top} \mathbf{y}-\mathbf{X}^{\top} \mathbf{X} \beta^{(0)}\right)\right) \\
& =\beta^{(0)}+\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}-\beta^{(0)} \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
\end{aligned}
$$

- This is exactly the MLE that we are familiar with.
- Thus the MLE is found after one Fisher scoring iteration.

Derivation

- It suffices to work out the case with one example (\mathbf{x}, y),

$$
\ell(\beta)=\ln p(y \mid \mathbf{x}, \beta),
$$

and then applying a summation over the examples to obtain the general case.

- For the gradient, using the chain rule,

$$
\nabla \ell(\beta)=\frac{d \ell}{d \eta} \nabla \eta(\beta)=\frac{y-\mu}{b(\phi)} \nabla \eta(\beta)
$$

To find $\nabla \eta(\beta)$, differentiate $g\left(A^{\prime}(\eta)\right)=g(\mu)=\mathbf{x}^{\top} \beta$

$$
g^{\prime}\left(A^{\prime}(\eta)\right) A^{\prime \prime}(\eta) \nabla \eta(\beta)=\mathbf{x}
$$

Hence we have $\nabla \eta(\beta)=\frac{1}{g^{\prime}(\mu) A^{\prime \prime}(\eta)} \mathbf{x}$, and thus

$$
\nabla \ell(\beta)=\frac{y-\mu}{b(\phi)} \frac{1}{g^{\prime}(\mu) A^{\prime \prime}(\eta)} \mathbf{x}=\frac{y-\mu}{g^{\prime}(\mu) V} \mathbf{x}
$$

where $V=\operatorname{var}(Y \mid \mathbf{x}, \beta)=b(\phi) A^{\prime \prime}(\eta)$.

- For Fisher information, differentiate $\nabla \ell(\beta)$ using the product rule
$\nabla^{2} \ell(\beta)=\frac{1}{g^{\prime}(\mu) A^{\prime \prime}(\eta)} \mathbf{x} \nabla^{\top}\left(\frac{y-\mu}{b(\phi)}\right)+\frac{y-\mu}{b(\phi)} \nabla^{\top}\left(\frac{1}{g^{\prime}(\mu) A^{\prime \prime}(\eta)} \mathbf{x}\right)$
Using $\nabla(y-\mu)=-\nabla \mu$ and $\mathbb{E}(y-\mu)=0$, we have

$$
I(\beta)=\mathbb{E}\left(-\nabla^{2} \ell(\beta)\right)=\frac{1}{g^{\prime}(\mu) b(\phi) A^{\prime \prime}(\eta)} \times \nabla^{\top} \mu(\beta)
$$

To find $\nabla \mu(\beta)$, differentiate $g(\mu)=\mathbf{x}^{\top} \beta$

$$
g^{\prime}(\mu) \nabla \mu(\beta)=\mathbf{x}
$$

Hence $\nabla \mu(\beta)=\frac{1}{g^{\prime}(\mu)} \mathbf{x}$, thus

$$
I(\beta)=\frac{1}{g^{\prime}(\mu)^{2} b(\phi) A^{\prime \prime}(\eta)} \mathbf{x x}^{\top}=\frac{1}{g^{\prime}(\mu)^{2} V} \mathbf{x x}^{\top}
$$

Matrix form

- Let $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right), \boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right), \mathbf{X}$ be the design matrix,

$$
\begin{aligned}
\mathbf{W} & =\operatorname{diag}\left(\frac{1}{g^{\prime}\left(\mu_{1}\right)^{2} V_{1}}, \ldots, \frac{1}{g^{\prime}\left(\mu_{n}\right)^{2} V_{n}}\right), \\
\mathbf{G} & =\operatorname{diag}\left(g^{\prime}\left(\mu_{1}\right), \ldots, g^{\prime}\left(\mu_{n}\right)\right) .
\end{aligned}
$$

- Then we have

$$
\begin{aligned}
\nabla \ell(\beta) & =\mathbf{X}^{\top} \mathbf{W}(\mathbf{G} \mathbf{y}-\mathbf{G} \boldsymbol{\mu}) \\
I(\beta) & =\mathbf{X}^{\top} \mathbf{W} \mathbf{X}
\end{aligned}
$$

- Thus Fisher scoring updates β to β^{\prime}

$$
\begin{aligned}
\beta^{\prime} & =\beta+\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W}(\mathbf{G} \mathbf{y}-\mathbf{G} \boldsymbol{\mu}) \\
& =\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W}(\mathbf{G} \mathbf{y}-\mathbf{G} \boldsymbol{\mu}+\mathbf{X} \beta) .
\end{aligned}
$$

Fisher scoring as IRLS

- Let $\mathbf{z}=\mathbf{G y}-\mathbf{G} \boldsymbol{\mu}+\mathbf{X} \beta$, then Fisher scoring update is

$$
\beta^{\prime}=\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W} \mathbf{z},
$$

- β^{\prime} is the solution of the weighted least squares problem

$$
\min _{\tilde{\beta}}(\mathbf{z}-\mathbf{X} \tilde{\beta})^{\top} \mathbf{W}(\mathbf{z}-\mathbf{X} \tilde{\beta}) .
$$

- Fisher scoring is thus an instance of iteratively reweighted least squares (IRLS) algorithm.

Properties of MLE

Assumption

The model is well-specified, that is, each y_{i} is independently drawn from $p\left(Y \mid \mathbf{x}_{i}, \beta^{*}\right)$, that is, the GLM with parameter β^{*}.

Asymptotic normality

Under appropriate regularity conditions, the MLE $\hat{\beta}$ is asymptotically normally distributed with mean β^{*}, and covariance $I^{-1}\left(\beta^{*}\right)$.
$I(\beta)$ is linear in n, thus the entries of the covariance matrix is of the order $1 / n$.

Confidence interval

A marginal $1-\alpha$ confidence interval for β_{i} is given by

$$
\hat{\beta}_{i} \pm z_{\alpha / 2} \sigma_{i}
$$

where $\sigma_{i}=\sqrt{I^{-1}\left(\beta^{*}\right)_{i i}}$. This is approximated by

$$
\hat{\beta}_{i} \pm z_{\alpha / 2} \hat{\sigma}_{i}
$$

where $\hat{\sigma}_{i}=\sqrt{I^{-1}(\hat{\beta})_{i i}}$.

Testing significance of effect

- We want to test whether the i-th covariate has a significant effect

$$
H_{0} \quad \beta_{i}^{*}=0, \quad H_{1} \quad \beta_{i}^{*} \neq 0 .
$$

- Under H_{0}, the Wald statistic $T=\frac{\hat{\beta}_{i}}{\hat{\sigma}_{i}}$ is asymptotically standard normal

$$
T \sim N(0,1) .
$$

- At significance level α, reject H_{0} iff $|T| \geq z_{\alpha / 2}$.

Remark

- With a mis-specified model, asymptotic normality still holds, but the mean and the covariance matrix of the asymptotic distribution now depend on both the model class and the unknown true distribution.
- The confidence interval and the distribution of Wald's statistics cannot be computed, and can only be applied (with caution) if the model is not too much away from reality.

GLM with Canonical Link

Motivation

- For OLS and logistic regression, both have the linear predictor $\mathbf{x}^{\top} \beta$ as the natural parameter.
- GLMs with this property are mathematically appealing to work with.

Canonical link

- A link function $g(\cdot)$ is called a canonical link if $g(\mu)=\eta$, that is, $\eta=\beta^{\top} \mathbf{x}$.
- For a natural exponential family, the canonical link is $A^{\prime-1}$.
- A GLM using a canonical link can be written down as

$$
p(y \mid \mathbf{x}, \beta)=\exp \left(\frac{y \mathbf{x}^{\top} \beta-A\left(\mathbf{x}^{\top} \beta\right)}{b(\phi)}+c(y, \phi)\right)
$$

where A is from the natural form of the exponential family.

Examples

Exponential family Canonical link GLM

$$
\begin{array}{rll}
\text { Normal } & g(\mu)=\mu & \text { OLS } \\
\text { Poisson } & g(\mu)=\ln \mu & \text { Poisson regression } \\
\text { Binomial } & g(\mu)=\ln \left(\frac{\mu}{1-\mu}\right) & \text { Logistic regression } \\
\text { Gamma } & g(\mu)=\mu^{-1} &
\end{array}
$$

Remark

- The form of GLM with canonical link is mathematically convenient.
- However, it does not imply that canonical link necessarily leads to a better model.

What You Need to Know

- Fisher scoring for GLMs update rule, interpretation, example, derivation, matrix form, IRLS
- Properties of MLE when model is well-specified, and when model is mis-specified
- Models with canonical links
mathematically convenient, but not necessarily a better model.

