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This Lecture

® Fisher scoring for GLM
® Properties of MLE

® GLM with canonical link
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Fisher Scoring for GLM

Recall: Fisher scoring
e A general algorithm for finding an MLE.
e Start with some 5(0). At iteration t > 0,

D = 5O + 17151 v 4(51)).

where 1(3) = —EV?2/(3) (known as Fisher information).
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Log-likelihood for GLM

e Given training data (x1,Y1),- - -, (Xn, ¥n), our objective is to
maximize the log-likelihood

UB) = Z Inp(y; | xi, B)-

¢ Recall: p(y | x,3) can be explicitly computed as

ply 1x.8) =exp (25 50 4 clr.))
where n = A7 1(g71(3x)).

We use the natural statistics here (i.e., we assume T(y) =

y.)
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Fisher scoring for GLM
e Let yj = E(Y; [ xi, 8) = g7 (x] B) and Vi = var(Y | x;, ).
® The gradient, or score function, is

Yi — Hi
VELiB) = ———X|.
") Z g'(ni)Vi
® The Fisher information is

1
/(ﬂ) = Z mxixij

No specific parametrization of the exponential family is required.
Choose whichever is more convenient for computing the variances.
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Interpretation

® Gradient is a linear combination of input x;’s.

Weight of x; is
® proportional to y; — u; (mean's quality as a predictor),
® inversely proportional to V; (variance of the response),

® proportional to A~ = d(i#fﬂ) (rate of change of mean in the linear

g’ (1i)
predictor).
-

® Fisher information is a linear combination of x;x; 's.

Weight of x,-x,-T is
® inversely proportional to V;,
® proportional to ﬁ.
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Example 1. Ordinary least squares
o Recall: Y; "% N(x/B,02).
® We have p; = x,TB, Vi =02, g(u) =, g'(n) =1, thus
g

ol 1
Vi) =3 R = L (XTy - XTx8),

1 1
18)=>_ ;x,-x,-T = ;xTx,

where X is the design matrix.
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e For any ﬁ(o), we have

1 1
B = 3O 4 (szTx> (Jz(xTy — XTXB(O))>
= O+ (XTX) !XTy — 8
— (XTx)fley

® This is exactly the MLE that we are familiar with.

® Thus the MLE is found after one Fisher scoring iteration.
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Derivation

e |t suffices to work out the case with one example (x,y),

((B) =Inp(y | x,5),

and then applying a summation over the examples to obtain the
general case.
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For the gradient, using the chain rule,

vUE) = 5 (B) = L)
To find Vn(B), differentiate g(A'(n)) = g(u) =x' 3
g' (A M)A (n) Vn(B) =

Hence we have V(8) = mx, and thus

Y= 1 o Y TH
VIO = 50y dA ) ~ gV

where V = var(Y | x, 3) = b(¢)A"(n).
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For Fisher information, differentiate V ¢(3) using the product rule

2 _ 1 <V T y—u Y BT 1 x
0= goma™ G ) 5 Y (o)
Using V(y — ) = =V and E(y — ) =0, we have

1
1(B) = E(- V?{(B)) = T .
(8) =E(=V=(B)) g,(#)b(¢)A,,(n)xV 1(8)
To find V u(p), differentiate g(u) = x' 3
g' (W) Vu(B) =
Hence V pu(5) = g(ﬂ)x thus
1(B) = 1 xx| = L xx "
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Matrix form
® lety=1(y1,---,¥n), = (i1,...,pn), X be the design matrix,

1 1
W = dia e ,
o8 <g’(ul)2V1 g/(ﬂn)ZVn>
G = diag(g' (k1) - - -, & (1n))-

® Then we have

V(B) = X"W(Gy — Gp),
1(8) = XTWX.

® Thus Fisher scoring updates 3 to /3’

B =B+ (XTWX) X TW(Gy — Gp)
= (XTWX)IXTW(Gy — Gu + Xp).
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Fisher scoring as IRLS
® let z= Gy — Gu + Xj, then Fisher scoring update is

B = (X"TWX)1X Wz,
° B/ is the solution of the weighted least squares problem

mEin(z — XB3)TW(z — XB).

e Fisher scoring is thus an instance of iteratively reweighted least
squares (IRLS) algorithm.
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Properties of MLE

Assumption

The model is well-specified, that is, each y; is independently drawn
from p(Y | x;, 8%), that is, the GLM with parameter 5*.

Asymptotic normality

Under appropriate regularity conditions, the MLE Bis
asymptotically normally distributed with mean 8*, and covariance

171(8%).

I(B) is linear in n, thus the entries of the covariance matrix is of
the order 1/n.
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Confidence interval

A marginal 1 — « confidence interval for (3; is given by

Bi + Z5)20005
where o; = /I71(3*);;. This is approximated by
Bi £ 24261,

where §; = I_l(BA),-,-.
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Testing significance of effect

® We want to test whether the j-th covariate has a significant effect

® Under Hp, the Wald statistic T = % is asymptotically standard
normal

T ~ N(0,1).

® At significance level o, reject Hp iff | T| > z, .
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Remark

e With a mis-specified model, asymptotic normality still holds, but
the mean and the covariance matrix of the asymptotic distribution
now depend on both the model class and the unknown true
distribution.

® The confidence interval and the distribution of Wald's statistics
cannot be computed, and can only be applied (with caution) if the
model is not too much away from reality.
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GLM with Canonical Link

Motivation
® For OLS and logistic regression, both have the linear predictor x ' 3
as the natural parameter.
® GLMs with this property are mathematically appealing to work
with.
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Canonical link

e A link function g(-) is called a canonical link if g(u) = 7, that is,

n= ﬁTx.

® For a natural exponential family, the canonical link is A"~

® A GLM using a canonical link can be written down as

yx' 5 —A(x'p)
b(¢)

ply | x.) =exo )

where A is from the natural form of the exponential family.
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Examples

Exponential family Canonical link GLM
Normal g(u) = OLS
Poisson g(u) = In,u Poisson regression
Binomial g(u) = ﬁ) Logistic regression
Gamma g(u) =
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Remark
® The form of GLM with canonical link is mathematically convenient.

® However, it does not imply that canonical link necessarily leads to
a better model.
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What You Need to Know

® Fisher scoring for GLMs

update rule, interpretation, example, derivation, matrix form, IRLS
® Properties of MLE

when model is well-specified, and when model is mis-specified
® Models with canonical links

mathematically convenient, but not necessarily a better model.
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