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Examples of Binary Responses

Medical trials
Predict whether a patient will recover or not after a treatment.

Spam filtering
Predict whether an email is a spam or not.

Information retrieval
Predict whether a document is relevant.

Credit decisions
Predict whether a loan applicant is credible.
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This Lecture

• Model choices

• Logistic regression

• Binomial data

• Prospective vs. retrospective sampling

• The glm function in R
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Models for Binary Responses

Structure

• A GLM for binary response data has the following form

(systematic) 𝜇 = E(Y | x) = g−1(𝛽⊤x).

(random) Y | x ∼ B(𝜇).

• The exponential family has to be a Bernoulli distribution.

• The link function g : [0, 1] → (−∞,+∞) is bijective.
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Link functions

• Logit

g(𝜇) = logit(𝜇) = ln
𝜇

1− 𝜇
.

• Probit or inverse Normal function

g(𝜇) = Φ−1(𝜇),

where Φ is the normal cumulative distribution function.

• Complementary log-log

g(𝜇) = ln(− ln(1− 𝜇)).
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Plot of the link functions
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Comparison of the link functions

• Logit and probit are almost linearly related when 𝜇 ∈ [0.1, 0.9].

• Logit and complementary log-log are both close to ln𝜇 for small 𝜇.

• Logit leads to an easily interpretable model, and is suitable for data
collected retrospectively.

We will focus on the logit link.
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Logistic Regression

Recall

• When Y takes value 0 or 1, we can use the logistic function to
squash x⊤𝛽 to [0, 1], and use the Bernoulli distribution to model
Y | x, as follows.

(systematic) E(Y | x) = logistic(𝛽⊤x) =
1

1 + e−𝛽⊤x
.

(random) Y | x is Bernoulli distributed.

• Or more compactly,

Y | x ∼ B

(︂
1

1 + e−𝛽⊤x

)︂
,

where B(p) is the Bernoulli distribution with parameter p.
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• The logistic regression can be written explicitly as

p(y | x , 𝛽) = ey𝛽
⊤x

1 + e𝛽⊤x

• Given x, we can predict Y as

argmax
y

p(y | x, 𝛽) =

{︃
1, x⊤𝛽 > 0.

0, x⊤𝛽 ≤ 0.
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Parameter interpretation

• The log-odds is

ln
p

1− p
= 𝛽⊤x,

where p = p(y = 1 | x , 𝛽).
• A unit increase in xi changes the odds by a factor of e𝛽i .
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Fisher scoring

• Let X be the design matrix, and

p = (p1, . . . , pn) with pi = E(Yi |, xi , 𝛽),
W = diag (p1(1− p1), . . . , pn(1− pn)) .

• Then the gradient and the Fisher information are

∇ ℓ(𝛽) = X⊤(y − p),

I (𝛽) = X⊤WX,

• Fisher scoring updates 𝛽 to

𝛽′ = 𝛽 + I (𝛽)−1∇ ℓ(𝛽).
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Binomial Data

• In binomial data, for each x, we perform some number of t trials,
and observe some number s of successes.

• We want to model the success probability.

• Essentially, each binomial example is a set of binary data.

• Specifically, given x, if we observe s successes among t trials, then
we can think of the data as having s (x, 1) pairs, and t − s (x, 0)
pairs.
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Prospective vs. Retrospective

Sampling

Example

• Consider a study on the effect of exposure to a toxin on the
incidence of a disease.

• Prospective sampling
• Sample a group of exposed subjects, together with a comparable

group of non-exposed, and monitor the progress of each group.
• We may end up having too few diseased subjects to draw any

meaning conclusion...

• Retrospective sampling
• Sample diseased and disease-free individuals, and then identify at

their exposure status.
• We often end up with a sample with a much higher disease rate

than the actual rate...
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Comparing the two sampling schemes

• Prospective sampling
• Sample x, then sample y .
• The sampling distribution is designed to faithful to actual joint

distribution P(x, y).

• Retrospective sampling
• Sample y , then sample x.
• y is usually not randomly sampled from the true marginal P(y).
• The sampling distribution may be very different from P(x, y).
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When P(y | x) is logistic regression...

• Assume that P(y | x) is a logistic regression model p(y | x, 𝛽).
• Retrospective sampling is sampling from a distribution P̂(x, y) that

is generally different from P(x, y).

• However, if the probability of sampling x depends only on y , then

P̂(y | x) = ey(𝛼+x⊤𝛽)

1 + ey(𝛼+x⊤𝛽)
,

• That is, P̂(x, y) is the same as p(y | x, 𝛽) except that the intercept
may be different.

Notation: P denotes a data distribution, and p denotes a model.
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Justification

• Introduce the dummy variable Z indicating whether x is sampled.

• Our assumption is that

P(Z = 1 | Y = 0, x) = 𝜋0, P(Z = 1 | Y = 1, x) = 𝜋1,

where 𝜋0 and 𝜋1 are independent of x.

• Using Bayes rule, we have

P̂(y | x)
= P(y | z = 1, x)

=
P(y | x)P(z = 1 | x, y)

P(y = 1 | x)P(z = 1 | x, y = 1) + P(y = 0 | x)P(z = 1 | x, y = 0)

=
ey(𝛼+x⊤𝛽)

1 + e𝛼+x⊤𝛽
,

where 𝛼 = ln(𝜋1/𝜋0).
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The glm Function in R

Data

> chol = read.csv("cholest.csv")

> head(chol)

X cholesterol gender genderS disease

1 1 6.741923 1 m 1

2 2 5.675853 1 m 0

3 3 5.247094 0 f 0

4 4 5.034348 0 f 0

5 5 6.167538 0 f 0

6 6 5.025060 0 f 1
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Plot

> # plot disease status against cholesterol level

> palette(c('red', 'blue'))
> plot(chol$cholesterol, chol$disease, xlab='cholesterol',

ylab='disease', axes=F, col=chol$genderS, pch=16)

> # put a legend

> legend(6.8, 0.9, levels(chol$genderS), col=1:length(chol$genderS),
pch=16)

> # manually label x and y axes

> axis(1, at = c(4.5,5,5.5,6,6.5,7))

> axis(2, at=c(0,0.2,0.4,0.6,0.8,1.0))
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Fit a model

> # fit a logistic regression model of disease against gender and

cholesterol

> fit.bin = glm(disease ~ gender + cholesterol, data=chol,

family=binomial)

> # same as the following

> fit.bin = glm(disease ~ gender + cholesterol, data=chol,

family=binomial(link='logit'))

For more information...

• glm: https: // goo. gl/ zYUs5U

• formula: https: // goo. gl/ aQyeU7

• family: https: // goo. gl/ ZXsbN4
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Predition

> # fitted link on the training data

> predict(fit.bin)

> # predict link on new data

> predict(fit.bin, newdata=chol)

> # same as above

> predict(fit.bin, newdata=chol, type='link')
> # predict probabilities on new data

> predict(fit.bin, newdata=chol, type='response')
> # predict classes on new data

> as.numeric(predict(fit.bin, newdata=chol) > 0)
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Inspect a model

> fit.bin

Call: glm(formula = disease ~ gender + cholesterol, family =

binomial,

data = chol)

Coefficients:

(Intercept) gender cholesterol

-9.3203 -0.1094 1.5842

Degrees of Freedom: 99 Total (i.e. Null); 97 Residual

Null Deviance: 137.6

Residual Deviance: 114 AIC: 120

# also try this

> summary(fit.bin)
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What You Need to Know

• Model choices

Bernoulli for random component, several commonly used link
functions

• Logistic regression

p(y | x, 𝛽), prediction, parameter interpretation, Fisher scoring

• Binomial data

• Prospective vs. retrospective sampling

• The glm function in R
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