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Polytomous Response

Polytomous response: a response taking one of K > 2 fixed values (response

categories).

Main types

• Ordinal scales: the categories are ordered.

e.g. first, second, ...

• Interval scales: the categories are ordered with scores attached to
categories.

e.g. height groups

• Nominal scales: no structure at all.

e.g. red, green, blue
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This Lecture

• Modelling ordinal scales

• Modelling nominal scales
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Models for Ordinal Scales

Reduction to binary problems

• Assume the categories are 1, 2, . . . ,K .

• Model each cumulative distribution pj(x) = P(Y ≤ j | x) by a
logistic regression model

pj(x) = logistic(x⊤𝛽j).

• Equivalently,

logit(pj(x)) = x⊤𝛽j .

• This may not guarantee that pj(x) ≥ pi (x) for j ≥ i .
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Proportional odds model

• If we further assume that 𝛽1 = . . . = 𝛽K−1 = 𝛽, we get the
proportional odds model

logit(pj(x)) = 𝜃j + x⊤𝛽.

• The model need to satisfy

𝜃1 ≤ 𝜃2 ≤ . . . ≤ 𝜃K−1.
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• If we move from x to x′, we have

pj(x
′)/(1− pj(x

′)

pj(x)/(1− pj(x))
= exp(𝛽⊤(x′ − x)).

• That is, the odds changes by a factor of exp(𝛽⊤(x′ − x))
independent of the class.

• A unit increase in xi changes the odds by a factor of exp(𝛽i ).
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Proportional hazards model

• We can use other link functions in proportional odds model.

• Proportional odds model uses cloglog instead of logit link

cloglog(pj(x)) = 𝜃j + x⊤𝛽.
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Example

Data

Number of pneumonia cases and exposure time to a certain
bacteria.

exposure.time normal mild severe
5.8 98 0 0
15.0 51 2 1
21.5 34 6 3
27.5 35 5 8
33.5 32 10 9
39.5 23 7 8
46.0 12 6 10
51.5 4 2 5
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Fit a proportional odds model

> library(VGAM)

> # the pneumo dataset is part of the VGAM library

> fit.pom = vglm(cbind(normal, mild, severe) ~ log(exposure.time),

data=pneumo, cumulative(parallel=T, link='logit'))

1 = normal, 2 = mild, 3 = severe
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Inspect the proportional odds model

> summary(fit.pom)

Pearson residuals:

Min 1Q Median 3Q Max

logit(P[Y<=1]) -1.248 -0.07164 0.1441 0.3086 0.7714

logit(P[Y<=2]) -1.044 -0.18415 0.3093 0.3353 0.5048

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 9.6761 1.3241 7.308 2.72e-13 ***

(Intercept):2 10.5817 1.3454 7.865 3.69e-15 ***

log(exposure.time) -2.5968 0.3811 -6.814 9.50e-12 ***

The fitted models are

logitP(Y ≤ 1 | x) = 9.6761− 2.5968 log(exposure.time)

logitP(Y ≤ 2 | x) = 10.5817− 2.5968 log(exposure.time)
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Warning: Hauck-Donner effect detected in the following estimate(s):

'(Intercept):1'

Exponentiated coefficients:

log(exposure.time)

0.07451115

• Hauck-Donner effect: Wald’s test of significance is misleading.
This often happens when the data is separable (for this data set,
the log exposure time can be used to perfectly predict whether
Y ≤ 1).

• Increasing log exposure time by one unit changes all the odds by a
factor of 0.07451115.
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Fit a proportional hazards model

> fit.phm = vglm(cbind(normal, mild, severe) ~ log(exposure.time),

data=pneumo, cumulative(parallel=T, link='cloglog'))
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Inspect the proportional hazards model

> summary(fit.phm)

Pearson residuals:

Min 1Q Median 3Q Max

cloglog(P[Y<=1]) -0.6916 -0.4561 -0.04129 0.4381 0.5379

cloglog(P[Y<=2]) -1.0037 -0.3217 -0.03335 0.2006 0.7345

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 4.3457 0.6299 6.900 5.22e-12 ***

(Intercept):2 4.8283 0.6417 7.524 5.31e-14 ***

log(exposure.time) -1.2407 0.1897 -6.540 6.15e-11 ***

The fitted models are

cloglogP(Y ≤ 1 | x) = 4.3457− 1.2407 log(exposure.time)

cloglogP(Y ≤ 2 | x) = 4.8283− 1.2407 log(exposure.time)

13 / 20



Fitted probabilities and observed probabilities
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Models for Nominal scales

Multi-class logistic regression

• Recall: in binary logistic regression,

ln
p(Y = 1 | x,𝛽)
p(Y = 0 | x,𝛽)

= 𝛽⊤x,

That is, the log odds is linear.
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• When the classes are 1, . . . ,K , we want

ln
p(Y = i | x,𝛽)
p(Y = 1 | x,𝛽)

= 𝛽⊤
i x.

• This implies

p(Y = i | x,𝛽1:K ) =
exp(𝛽⊤

i x)∑︀
j exp(𝛽

⊤
j x)

,

where 𝛽1 = 0, and 𝛽1:K denotes 𝛽1, . . . ,𝛽K .

• Also known as multinomial logistic regression.
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Decision boundary

• Given x, we predict its class as argmaxy p(y | x,𝛽).
• The set of x in class y is the convex polytope described by the

contraints

𝛽⊤
y x ≥ 𝛽⊤

1 x,

. . .

𝛽⊤
y x ≥ 𝛽⊤

Kx.

• The boundary between different classes must be linear.
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Linearly separable data

• When the data is linearly separable, MLE diverges (it fails for
simple data)!

• There are various ways to fix this problem (for example, through
regularization, or using objective functions which search for
hyperplanes which are optimal in some sense, like support vector
machines).

Linearly separable data with K classes: there are K vectors 𝛽1, . . . ,𝛽K

such that x is in class y iff 𝛽⊤
y x ≥ 𝛽⊤

i x for all i .
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Multi-class logistic regression in R

> fit.mlr <- vglm(Species ~ ., multinomial, iris)

> # compute fitted probabilities

> predict(fit.mlr, type='response')
> # compute probabilities on new data

> predict(fit.mlr, newdata=iris, type='response')
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What You Need to Know

• Modelling ordinal scales

proportional odds model, proportional hazards model

• Modelling nominal scales

multiclass logistic regression

• Working with polytomous response data in R
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