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Examples of Count Responses

Traffic modelling
Predict the number of vehicles going from one place to another.

Behavior modelling
Predict the number of days absent from school.

Mineral exploration
Predict number of occurrences of mineral deposits at different
locations.

Manufacturing
Predict number of wave damage incidents to ships.
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This Lecture

• Model choices

• Poisson regression

• Overdispersion

• Quasi-Poisson regression

• Negative binomial regression
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Models for Count Responses

Structure

• The response function need to be non-negative
• The log link g(𝜇) = ln𝜇 is often used.
• The identity link g(𝜇) = 𝜇 is sometimes used (with care).

• The exponential family need to be a distribution on counts

Poisson distribution, negative binomial distribution (with fixed r)
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Poisson Regression

Recall

• When Y is a count, we can use exponentiation to map 𝛽⊤x to a
non-negative value, and use the Poisson distribution to model
Y | x, as follows.

(systematic) E(Y | x) = exp(𝛽⊤x).

(random) Y | x is Poisson distributed.

• Or more compactly,

Y | x ∼ Po
(︁
exp(𝛽⊤x)

)︁
,

where Po(𝜆) is a Poisson distribution with parameter 𝜆.
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• The Poisson regression model can be explicitly written as

p(y | x, 𝛽) = exp(y𝛽⊤x)

y !
exp(−e𝛽

⊤x).

• Given x, we can predict Y as the mode

argmax
y

p(y | x, 𝛽) = ⌊exp(𝛽⊤x)⌋, ⌈exp(𝛽⊤x)⌉ − 1.
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Parameter interpretation

• 𝜇 = exp(𝛽⊤x).

• One unit increase in xi changes the mean by a factor of e𝛽i .
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Fisher scoring

• Let 𝜇i = exp(x⊤i 𝛽).

• Then the gradient and the Fisher information are

∇ ℓ(𝛽) =
∑︁
i

(yi − 𝜇i )xi ,

I (𝛽) =
∑︁
i

𝜇ix
⊤
i xi ,

• Fisher scoring updates 𝛽 to

𝛽′ = 𝛽 + I (𝛽)−1∇ ℓ(𝛽).
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• Let X be the design matrix, and

𝜇 = (𝜇1, . . . , 𝜇n),

W = diag (𝜇1, . . . , 𝜇n) .

• In matrix notation, the gradient and the Fisher information are

∇ ℓ(𝛽) = X⊤(y − 𝜇),

I (𝛽) = X⊤WX,
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Example
Data

> library(MASS) # contains the quine dataset

> dim(quine)

[1] 146 5

> head(quine)

Eth Sex Age Lrn Days

1 A M F0 SL 2

2 A M F0 SL 11

3 A M F0 SL 14

4 A M F0 AL 5

5 A M F0 AL 5

6 A M F0 AL 13

• Subjects are 146 children from Walgett, New South Wales,
Australia.

• The Culture, Age, Sex and Learner status and the number of days
absent from school in a particular school year were recorded.

• Type help(quine) to read more about the dataset.
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Poisson regression

> fit.po <- glm(Days ~ Sex + Age + Eth + Lrn, data=quine,

family=poisson)

> summary(fit.po)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.71538 0.06468 41.980 < 2e-16 ***

SexM 0.16160 0.04253 3.799 0.000145 ***

AgeF1 -0.33390 0.07009 -4.764 1.90e-06 ***

AgeF2 0.25783 0.06242 4.131 3.62e-05 ***

AgeF3 0.42769 0.06769 6.319 2.64e-10 ***

EthN -0.53360 0.04188 -12.740 < 2e-16 ***

LrnSL 0.34894 0.05204 6.705 2.02e-11 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)
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First thought...

• All covariates are highly significant according to Wald’s test.

• Looks like we have a very good model!
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Recall

• With a mis-specified model, asymptotic normality still holds, but
the mean and the covariance matrix of the asymptotic distribution
now depend on both the model class and the unknown true
distribution.

• The confidence interval and the distribution of Wald’s statistics
cannot be computed, and can only be applied (with caution) if the
model is not too much away from reality.

Are we sure that the model is well-specified?
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Predictive performance on training set

> mean(quine$Days)
[1] 16.4589

> mean(abs(quine$Days - predict(fit.po, type='response')))
[1] 11.04622

> summary(quine$Days)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 5.00 11.00 16.46 22.75 81.00

> summary(predict(fit.qpo, type='response'))
Min. 1st Qu. Median Mean 3rd Qu. Max.

6.346 10.821 15.339 16.459 22.984 32.582

• Mean absolute error is high (11.04622/16.4589 ≈ 67%).

• yi ’s have very large range as compared to 𝜇i ’s, which is quite
unlikely if the data follows a Poisson distribution.

• We are observing overdispersion: variance in data is larger than
expected based on the model.
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Overdispersion for Poisson

Example 1. Clustering

• Consider the clustered Poisson process

N ∼ Po(𝜇),

Y = Z1 + . . .+ ZN , Zi ’s are i.i.d.,

Here we think of each Zi as the count in a cluster.

• The mean and variance of Y are

E(Y ) = E(N)E(Z ), var(Y ) = E(N)E(Z 2).

• If Zi ’s take value 1 with probability 1, then Y ∼ Po(𝜇).

• Relative to Poisson: we observe overdispersion if E(Z 2) > E(Z ),
and underdispersion if E(Z 2) < E(Z ).
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Example 2. Inter-subject variability

• Consider the Gamma mixture of Poisson distributions

𝜆 ∼ Γ(mean = 𝜇, var = 𝜇/𝜑),

Y ∼ Po(𝜆).

Here we treat each individual as having different mean 𝜆.

• Y follows a negative binomial distribution

Y | 𝜇, 𝜑 ∼ NB

(︂
mean = 𝜇, p =

1

1 + 𝜑

)︂
.

• var(Y ) = 𝜇/(1− p) > 𝜇, so we have overdispersion relative to
Poisson.
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Quasi-Poisson Regression

• Quasi-Poisson regression model introduces an additional dispersion
paramemeter 𝜑.

• It replaces the original model variance Vi on xi by 𝜑Vi .

• 𝜑 > 1 is used to accommodate overdispersion relative to the
original model.

• 𝜑 < 1 is used to accommodate underdispersion relative to the
original model.

• 𝜑 is usually estimated separately after estimating 𝛽.
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Quasi-Poisson regression

> fit.qpo <- glm(Days ~ Sex + Age + Eth + Lrn, data=quine,

family=quasipoisson)

> summary(fit.qpo)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.7154 0.2347 11.569 < 2e-16 ***

SexM 0.1616 0.1543 1.047 0.296914

AgeF1 -0.3339 0.2543 -1.313 0.191413

AgeF2 0.2578 0.2265 1.138 0.256938

AgeF3 0.4277 0.2456 1.741 0.083831 .

EthN -0.5336 0.1520 -3.511 0.000602 ***

LrnSL 0.3489 0.1888 1.848 0.066760 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasipoisson family taken to be 13.16691)
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• Estimated coefficients of Poisson regression and quasi Poisson
regression are the same (though printed differently).

• The dispersion parameter for quasi Poisson is 13.16691, indicating
overdispersion relative to Poisson.

• Quasi Poisson indicates that only Ethnicity and intercept are
significant.
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Negative Binomial Regression

• Uses the negative binomial distribution as the random component.

• This is not a GLM (unless we fixed the r parameter in NB(r , p)).

• The parameters can still be estimated using MLE.
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Using glm.nb from the MASS library

> fit.nb <- glm.nb(Days ~ Sex + Age + Eth + Lrn, data=quine)

> summary(fit.nb)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.89458 0.22842 12.672 < 2e-16 ***

SexM 0.08232 0.15992 0.515 0.606710

AgeF1 -0.44843 0.23975 -1.870 0.061425 .

AgeF2 0.08808 0.23619 0.373 0.709211

AgeF3 0.35690 0.24832 1.437 0.150651

EthN -0.56937 0.15333 -3.713 0.000205 ***

LrnSL 0.29211 0.18647 1.566 0.117236

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for Negative Binomial(1.2749) family taken to

be 1)

We get roughly the same qualitative conclusion as quasi Poisson.
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Dunning-Kruger Effect

in statistics...

A very wrong model can be very
confident.

Validate model assumptions before you trust.
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What You Need to Know

• Model choices

• Poisson regression: p(y | x, 𝛽), parameter interpretation, Fisher
scoring, Dunning-Kruger effect.

• Understand how overdispersion can occur relative to Poisson.

• Using quasi-Poisson regression to model data with variance
different from mean.

• Using negative binomial regression to model data with variance
larger than mean.
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