
Lecture 10. Modeling Process and Model
Diagnostics

Nan Ye

School of Mathematics and Physics
University of Queensland

1 / 21



This Lecture

• Modeling process

• Goodness of fit

• Residuals
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Modeling Process

Some key modeling activities

model class

data

fit
model

validate
model
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model
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• The choice of a model class is often driven by many factors,
including data characteristics, expressiveness, interpretability,
computational efficiency...

• If predictive performance (expressiveness) is the main concern
• try deep neural networks for image/text/speech data.
• try random forests when high-level features are available.

• GLMs can be good in terms of interpretability.
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• More data is often better.

• With right features, even simple models can work well.

• Exploratory analysis can suggest useful features and models.
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Some key modelling activities
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• Fitting is usually formulated as an optimization problem.

• MLE is often used to learn a statistical model.

• If predictive performance is the main concern, optimize the
performance measure directly.

• Sophisticated optimization algorithms may be needed.
• For GLM, Fisher scoring often works well for MLE.
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Some key modelling activities

model class

data

fit
model

validate
model

use
model

• Check model assumption
• Check goodness of fit, residual plot et al on training set.
• A good fit on the training set may mean overfitting.

• Check predictive performance
• Check cross-validation score, validation set performance.

• Reconsider model class or data if checks are not satisfactory.
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Some key modelling activities
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• After checks on the model, the model can then be used to make
predictions or draw conclusions (such as significance of variables,
variable importance).

4 / 21



Goodness of Fit

Deviance

• Null model
• Includes only the intercept term in the GLM.
• Variation in y ’s comes from the random component only.

• Full model (saturated model)
• Fit an exponential family distribution for each example.
• The exponential family distribution for (xi , yi ) is f (y | mean = yi ).
• Variation in y ’s comes from the systematic component only.

• GLM
• Summarizes data with a few parameters.
• The exponential family distribution for (xi , yi ) is f (y | mean = 𝜇̂i ),

where 𝜇̂i = g−1(x⊤i 𝛽).
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• Scaled deviance

D*(y; 𝜇̂) = 2
∑︁
i

ln f (yi | mean = yi )− 2
∑︁
i

ln f (yi | mean = 𝜇̂i )

This is twice the difference between log-likelihood of the full model
and the maximum log-likelihood achievable for the GLM.

• Deviance

D(y; 𝜇̂) = b(𝜑)D*(y; 𝜇̂).

Deviance is thus scaled deviance with the nuisance parameter
removed.
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Example. Gaussian
The scaled deviance is

D*(y; 𝜇̂)

= 2
∑︁
i

(︂
ln

1√
2𝜋𝜎

− (yi − yi )
2

2𝜎2

)︂
− 2

∑︁
i

(︂
ln

1√
2𝜋𝜎

− (yi − 𝜇̂i )
2

2𝜎2

)︂
=

∑︁
i

(yi − 𝜇̂i )
2

𝜎2
.

The deviance is

D(y; 𝜇̂) = 𝜎2D*(y; 𝜇̂) =
∑︁
i

(yi − 𝜇̂i )
2.
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distribution deviance

normal
∑︀

(y − 𝜇̂)2

Poisson 2
∑︀

(y ln y
𝜇̂ − (y − 𝜇̂))

binomial 2
∑︀

(y ln y
𝜇̂ + (m − y) ln m−y

m−𝜇̂)

Gamma 2
∑︀

(− ln y
𝜇̂ + y−𝜇̂

𝜇̂ )

inverse Gaussian
∑︀

(y − 𝜇̂)2/(𝜇̂2y)
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Recall

> logLik(fit.ig.inv)

'log Lik.' -25.33805 (df=5)

> logLik(fit.ig.invquad)

'log Lik.' -50.26075 (df=5)

> logLik(fit.ig.log)

'log Lik.' -45.55859 (df=5)

Inverse Gaussian regression with inverse link has the best fit (much
better than the other two).
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> summary(fit.ig.inv)

Null deviance: 0.24788404 on 17 degrees of freedom

Residual deviance: 0.00097459 on 14 degrees of freedom

> summary(fit.ig.invquad)

Null deviance: 0.24788 on 17 degrees of freedom

Residual deviance: 0.01554 on 14 degrees of freedom

> summary(fit.ig.log)

Null deviance: 0.2478840 on 17 degrees of freedom

Residual deviance: 0.0092164 on 14 degrees of freedom

• Inverse link has best fit.

• Same conclusion as obtained by looking at the log-likelihoods.

• summary function provides a comparison with the full model and
null model.
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Generalized Pearson X 2 statistic

• Recall: var(Y ) = b(𝜑)A′′(𝜂) for a natural exponential family.

• var(Y )/b(𝜑) depends only on 𝜂, and thus only on 𝜇.

• Often, var(Y )/b(𝜑) is called the variance function V (𝜇).

• Pearson X 2 statistic is

X 2 =
∑︁

(y − 𝜇̂)2/V (𝜇̂),

where V (𝜇̂) is the estimated variance function.

• The scaled version is X 2/b(𝜑).
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distribution X 2

normal
∑︀

(y − 𝜇̂)2

Poisson
∑︀

(y − 𝜇̂)2/𝜇̂

binomial
∑︀ (y−𝜇̂)2

𝜇̂(1−𝜇̂)

Gamma
∑︀

(y − 𝜇̂)2)/𝜇̂2

inverse Gaussian
∑︀

(y − 𝜇̂)2/𝜇̂3
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Asymptotic distribution

• If the model is true, then the scaled deviance or the scaled Pearson
X 2 statistic asymptotically follows 𝜒2

n−p, where n is the number of
examples, and p is the number of parameters estimated.

• In principle, this can be used to test goodness of fit, but this does
not really work well.

• A test on the scaled deviance or the scaled Pearson X 2 statistic
cannot be used to justify that the model is correct.
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Residuals

Response residual

• This is the difference between the output and fitted mean

rR = y − 𝜇̂.

• Measures deviation from systematic effect on an absolute scale.
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Pearson residuals

• This is the normalized response residual

rP =
y − 𝜇̂√︀
V (𝜇̂)

• Constant variance and mean zero if model is correct.
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distribution Pearson residual

normal y − 𝜇̂
Poisson (y − 𝜇̂)/

√
𝜇̂

binomial (y − 𝜇̂)/
√︀
𝜇̂(1− 𝜇̂)

Gamma (y − 𝜇̂)/𝜇̂

inverse Gaussian (y − 𝜇̂)/𝜇̂3/2
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Working residuals

• Recall: in the IRLS interpretation of Fisher scoring, at each
iteration we try to fit the adjusted response vector

z = Gy − G𝜇+ X𝛽,

where G = diag(g ′(𝜇1), . . . , g
′(𝜇n)).

• The adjusted response for (x, y) is

z = g ′(𝜇)(y − 𝜇) + x⊤𝛽.

• The working residual is

rW = z − 𝜉 = (y − 𝜇̂)g ′(𝜇) = (y − 𝜇̂)
𝜕𝜉

𝜕𝜇
|𝜇=𝜇̂,

where 𝜉 = x⊤𝛽.
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Deviance residuals

• This is the signed contribution of each example to the deviance

rD = sign(y − 𝜇̂)
√
d ,

where
∑︀

i di = D.

• Closer to a normal distribution (less skewed) than Pearson
residuals.

• Often better for spotting outliers.
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distribution deviance residual

normal y − 𝜇̂

Poisson sign(y − 𝜇̂)
√︁
2(y ln y

𝜇̂ − (y − 𝜇̂))

binomial sign(y − 𝜇̂)
√︁
2(y ln y

𝜇̂ + (m − y) ln m−y
m−𝜇̂)

Gamma sign(y − 𝜇̂)
√︁
2(− ln y

𝜇̂ + y−𝜇̂
𝜇̂ )

inverse Gaussian (y − 𝜇̂)/𝜇̂
√
y
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Computing residuals in R

> resid(fit.ig.inv, 'response')
> resid(fit.ig.inv, 'pearson')
> resid(fit.ig.inv, 'working')
> resid(fit.ig.inv, 'deviance')
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What You Need to Know

• Modeling process

• Goodness of fit: deviance and Pearson X 2 statistic

• Response, working, Pearson, and deviance residuals
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