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Recall: Some key modelling activities

model class

data

fit
model

validate
model

use
model

• Check model assumption
• Check goodness of fit, residual plot et al on training set.
• A good fit on the training set may mean overfitting.

• Check predictive performance
• Check cross-validation score, validation set performance.

• Reconsider model class or data if checks are not satisfactory.

2 / 24



This Lecture

• Checking model assumption

• Checking predictive performance
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Residual Plots

• Plot Pearson residuals/deviance residuals against link (i.e. linear
predictor).

• If the model is correct, the points should be roughly uniformly
scattered around 0.

• Plotting against the fitted mean (i.e. response) can be helpful but
less popular.
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Example
Consider plots of Pearson residuals againt the link (linear predictor) for
models on the blood clotting time example.

Recall the following models

> fit.ig.inv = glm(time ~ lot * log(conc), data=clot,

family=inverse.gaussian(link='inverse'))
> fit.ig.invquad = glm(time ~ lot * log(conc), data=clot,

family=inverse.gaussian)

> fit.ig.log = glm(time ~ lot * log(conc), data=clot,

family=inverse.gaussian(link='log'))
> fit.gam.inv = glm(time ~ lot * log(conc), data=clot, family=Gamma)

...
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Comparison of link functions
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(b) fit.ig.invquad
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• Residual decreases as link increases for inverse quadratic link

• No such obvious pattern for inverse link.

• Inverse link model is thus likely to be better.

• This is consistent with conclusions obtained using likelihood or
residual deviance (see previous lectures).
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Comparison of variance functions
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• Residuals on the RHS are close to 0 for Gamma.

• No such obvious pattern for inverse Gaussian.

• Inverse Gaussian thus likely has a better variance structure.

• This is consistent with conclusions obtained using likelihood.

> logLik(fit.gam.inv)

'log Lik.' -26.59759 (df=5)

> logLik(fit.ig.inv)

'log Lik.' -25.33805 (df=5)
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Link scale vs. mean scale
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(a) link scale
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(b) mean scale

• Both are Pearson residual plots for fit.ig.inv.

• The mean scale spreads out the rightmost two points too much.

• These two points appear to be outliers on the mean scale, but not
on the link scale.
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Deviance residual plots
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(b) fit.ig.invquad
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• We get roughly the same plots, and thus roughly the same
conclusions as using the Pearson residual plots.

• In fact, the Pearson residuals and the deviance residuals are almost
the same for the models considered here.
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Analysis of Deviance

• We successively fit a sequence of models by adding one term to the
model.

• The deviance of a term is the difference between the deviance of
the first model that contains it and the deviance of the previous
model.

• Thus the deviance of a term depends on when it is added.
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Example

> anova(fit.ig.inv)

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev F Pr(>F)

NULL 17 0.247884

lot 1 0.034159 16 0.213725 492.04 2.630e-12 ***

log(conc) 1 0.203628 15 0.010097 2933.14 < 2.2e-16 ***

lot:log(conc) 1 0.009122 14 0.000975 131.40 1.679e-08 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

• The deviance of a term is F-distributed under the null hypothesis
that the term is not significant.

• All terms are significant in this example.

• log(conc) has the largest contribution in the model.
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> fit.ig.inv1 = glm(time ~ log(conc)*lot, data=clot,

family=inverse.gaussian(link='inverse'))
> anova(fit.ig.inv1)

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev F Pr(>F)

NULL 17 0.247884

log(conc) 1 0.206543 16 0.041341 2975.13 < 2.2e-16 ***

lot 1 0.031244 15 0.010097 450.06 4.829e-12 ***

log(conc):lot 1 0.009122 14 0.000975 131.40 1.679e-08 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

• The order of lot and log(conc) are swapped.

• The deviances are slightly different.

• However, we have the same qualitative conclusion about the
signifiance of the terms.
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• Often, we need to decide whether a factor should be included.

• This can be done by comparing the deviances of before and after
including it.

• Again, the conclusion depends on the model on which the factor is
added.
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> fit1 = glm(time ~ log(conc), data=clot,

family=inverse.gaussian(link='inverse'))
> fit2 = glm(time ~ lot*log(conc), data=clot,

family=inverse.gaussian(link='inverse'))
> anova(fit1, fit2, test='F')
Analysis of Deviance Table

Model 1: time ~ log(conc)

Model 2: time ~ lot * log(conc)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 16 0.041341

2 14 0.000975 2 0.040367 290.73 3.971e-12 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The lot factor is significant.
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Checking Predictive Performance

Overfitting

• A model satisfying the model assumption does not necessarily
make good predictions on test data.

• In particular, when there are many covariates, a model which
better fits the training data may have poorer performance than one
which fits less well.

• Overfitting: as model complex increases, the model fits the training
set better and better, but the test set performance first improves
and then drops.
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Measuring predictive performance

• The validation set approach
• If we have enough data, we can split the dataset into a training set

a validation set.
• Train models using the training set, and pick the one with best

predictive performance on the validation set.

• Cross-validation (CV)
• We split the dataset into K folds (parts).
• For each model class, train K models by leaving one fold out each

time, and make predictions on the left-out fold.
• The performance of predictions obtained using CV is the predictive

performance of the model class.
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> library(caret)

> train(time ~ lot*log(conc), method="glm", data=clot,

family=inverse.gaussian(link='inverse'),
trControl=trainControl(method="LOOCV"))

Resampling results:

RMSE Rsquared MAE

15.98637 0.9575552 5.65666

• In leave-one-out CV, each fold has only one example.

• The caret library provides a simple way to do CV for many models,
including GLMs.
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> train(time ~ lot*log(conc), method="glm", data=clot,

family=inverse.gaussian(link='log'),
trControl=trainControl(method="LOOCV"))

Resampling results:

RMSE Rsquared MAE

13.34795 0.8315472 6.159968

• Using the log link improves RMS, but decreases R2 and MAE.

• This is what usually happens: no single model performs the best
for all performance measures.
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> train(time ~ lot*log(conc), method="glm", data=clot,

family=inverse.gaussian(link='1/mu^2'),
trControl=trainControl(method="LOOCV"))

Resampling results:

RMSE Rsquared MAE

5.791858 0.9130303 3.973965

Warning messages:

1: In sqrt(eta) : NaNs produced

2: In sqrt(eta) : NaNs produced

• Inverse quadratic link is only legitimate when one can ensure on a
new x, 𝛽⊤x > 0.

• In this example, it happens that this positivity constraint is violated
twice (eta refers to the linear predictor).
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What You Need to Know

• Checking model assumption: residual plots, analysis of deviance.

• Checking predictive performance: validation set, cross-validation.
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