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Looking Back: Course Overview

Generalized linear models (GLMs)

e Building blocks

systematic and random components, exponential familes
e Prediction and parameter estimation
e Specific models for different types of data

continuous response, binary response, count response...

e Modelling process and model diagnostics
Extensions of GLMs

e Quasi-likelihood models
e Nonparametric models

e Mixed models and marginal models

Time series
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Extending GLMs

Quasi-likelihood (a) (c) Mixed /marginal
GLMs
models

models
(b)

[ Nonparametric }

models

(a) Relax assumption on the random component.
(b) Relax assumption on the systematic component.

(c) Relax assumption on the data (independence).
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Recall

Gamma regression
e When Y is a non-negative continuous random variable, we can
choose the systematic and random components as follows.
(systematic) E(Y | x) = exp(5'x)
(random) Y | x is Gamma distributed.

e We further assume the variance of the Gamma distribution is u?/v
(v treated as known), thus

Y [ x~ [ = exp(87x),var = i2/),

where (1 = a,var = b) denotes a Gamma distribution with mean
a and variance b.

We have seen how to estimate § for Gamma regression. How do
we estimate the dispersion parameter ¢ = 1/v7
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Poisson regression
e Poisson regression requires data variance to be the same as mean,
but this is seldom the case in real data.
e Overdispersion: variance in data is larger than expected based on
the model.
e Underdisperson: variance in data is smaller than expected based on
the model.

e For count data, we used quasi Poisson regression to allow both
overdisperson and underdispersion.

How is the quasi-Poisson model defined? How are the parameters
estimated?
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This Lecture

e Estimation of dispersion parameter

e Quasi-likelihood: derivation and parameter estimation
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Estimation of Dispersion Parameter

Recall: Fisher scoring for Gamma regression
e Consider the Gamma regression model

Y | x~ (= exp(8'x),var = i /v),

o Let ;= exp(x,—-rﬁ), then gradient and Fisher information are

Vi) = S i) = Y

e Fisher scoring updates ( to
B =B+1(8)tVB).
Update of 3 does not depend on the dispersion parameter ¢ = 1/v!
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Moment estimator for the dispersion parameter

e We first estimate 3 with Fisher scoring.
e Recall: if a GLM model with var(Y) = ¢V/(u) is correct, then

X2 :Z(Yi—ﬂi)2 ~ 2

b V()
where X? is the generalized Pearson statistic, n is the number of
examples, and p is the number of parameters in 5.

e That is, we have E(X2/¢) = n — p.

e The gives us the moment estimator

S 1 (vi — fi)?
i n—pz V(i)

i

The formula can be used for any GLM with unknown ¢!
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Example
For Gamma regression, var(Y) = ¢u?, so V() = u?.

Our estimate is consistent with the summary function.
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Quasi-Likelihood

Recall: Fisher scoring for GLM
o Let yi; = E(Y; | x;i, 8) = g(x] B) and V; = var(¥; | x;, B).

e The gradient, or score function, is

-5 Jitn

e The Fisher information is

1(8) = Z ,(/i)QV_XiXiT-

— & i
e Fisher scoring updates (5 to

B'=B+17HB) VL)
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Fisher scoring for GLM can thus be written as

-1
/ 1 Yi = i
F=p+ (Z g(u)\/> (Z gmv) '

1

We just need to know the link function g and the variances V;'s.

In particular, if we know V; = ¢V/(;), then the update does not
depend on ¢.

Thus we can determine 3 even if ¢ is unknown.

11 /28



Quasi-model via Fisher scoring

e A GLM has the following structure

(systematic) u=E(Y | x) = h(8"x),
(random) Y | x follows an exponential family distribution.

e A quasi-model relaxes the assumption on the random component

(systematic) u=E(Y | x) = h(8"x),
(random) var(Y | x) = o V(u),

where ¢ is a dispersion parameter, V/(u) is a variance function,

and [ is determined using Fisher scoring!
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Hi, I'm Quasimodo.
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Quasi-model via quasi-likelihood

e A quasi-model relaxes the assumption on the random component

(systematic) pu=E(Y | x) = h("x),
(random) var(Y | x) = oV/(u),

where ¢ is a dispersion parameter, V/(u) is a variance function,
and [ is determined by maximizing quasi-likelihood!

e Quasi-likelihood is a surrogate for the log-likelihood of the mean

parameter . given an observation y, when we only know
var(Y' | x) = oV/(p).
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Construction of quasi-likelihood

e Recall: a score function () satisfies

E(¢) =0,
var(f) = —E(¢).

e Define S(u) = Jf(ﬁ), then S(u) is similar to a score function:

;1
var(§) = —ES' = V)

e S(u) is thus called a quasi-score function.
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e The usual log-likelihood is an integral of the score function.

e By analogy, the quasi-likelihood (quasi log-likelihood) is

Qi y) = ' yv_(tt)dt.
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Quasi-likelihood for some variance functions

V() Q(wy) distribution constraint
1 —(y — w)?/2 normal -
m yinp—p Poisson nw>0,y>0
e —y/u—Inp Gamma uw>0y>0
w —y/(2u?) +1/p inverse Gaussian nw>0,y >0

2
um o %—Q“—m) - j>0,m#0,1,2
w(l—p) ylng5 + In(1—p) binomial nwe(0,1),0<y<1
P2 (1 — p?) (2y—1)ln1 Lo =L pe(0,1),0<y<1
A+ pu?/k ylin k+ +klnﬁ negative binomial p© >0,y >0
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Parameter estimation for quasi-model

e In a quasi-model, u is a function of 3, and the quasi-likelihood is
also a function of 3

Q(B) = Z Q(ui(B): vi)

e The Fisher scoring update for @ is given by

B'=8+(-EVZQ(8) "V Q)
-1
_ 1 T Yi— i
-0 (Z g (1)PoVm) ) (Z g/(uf)qbV(uf)"’) |
The update is independent of ¢.

. : 2 2 . :
® ¢ is estimated as ¢ = nXTp after 3 is estimated.
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Recall: quasi-Poisson regression

e Quasi-Poisson regression model introduces an additional dispersion
paramemeter ¢.

It replaces the original model variance V; on x; by ¢V;.

¢ > 1 is used to accommodate overdispersion relative to the
original model.

e ¢ < 1is used to accommodate underdispersion relative to the
original model.

¢ is usually estimated separately after estimating 3.
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Estimating ¢ in quasi-Poisson regression
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Example

Data
Variety

Site 1 2 3 4 5 6 7 8 9 10 Mean
1 0.05 000 000 010 025 005 050 130 150 150 0.52
2 0.00 0.05 005 030 075 030 300 750 100 1270 256
3 125 125 250 16.60 250 250 0.00 20.00 37.50 26.25 11.03
4 250 050 0.01 3.00 250 0.01 25.00 55.00 5.00 40.00 13.35
5 550 100 6.00 1.10 250 800 1650 29.50 20.00 43.50 13.36
6 1.00 500 500 500 500 500 10.00 500 50.00 75.00 16.60
7 500 0.10 500 5.00 50.00 10.00 50.00 25.00 50.00 75.00 27.51
8 5.00 10.00 5.00 5.00 2500 75.00 50.00 75.00 75.00 75.00 40.00
9 17.50 25.00 42.50 50.00 37.50 95.00 62.50 95.00 95.00 95.00 61.50
Mean 420 477 7.34 957 1400 21.76 24.17 3481 37.22 49.33 20.72
e Incidence of leaf blotch on 10 varieties of barley grown at 9 sites.

e The response is the percentage leaf area affected.
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Heatmap for the data
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> fit.gbin = glm(proportions ~ as.factor(site) +
as.factor(variety), family = quasibinomial)

e A binomial model satisfies var(Y) = u(1 — u).

e A quasibinomial model assumes that var(Y) = ¢u(l — p), where ¢
is the dispersion parameter.

e The probability of having leaf blotch for variety j at site / has the
form
~ exp(b+ai+5)
Pi=17 exp(b + a; + f3;)
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as.
as.
as.
as.
as.
as.

as

as.

as

Si

(Dispersion parameter for quasibinomial family taken to be 0.08877)

factor(variety)2
factor(variety)3
factor(variety)4
factor(variety)5
factor(variety)6
factor(variety)7
.factor(variety)8
factor(variety)9
.factor(variety) 10

gnif. codes:

e We can see that both a; and f3; are increasing as i/, j increase.

e This is consistent with the trend in data.
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Pearson residual plot
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e The residuals are more or less symmetrically distributed around 0.

e Thus the mean function appears to be a good fit.

e However, the residuals are very close to 0 at both ends, and this
suggests that the variance function is not good.
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Pearson residual plot with V() = p2(1 — p)?

pearson

link

e The residual plot is better than that with V/(u) = p(1 — ).

e The variance function V(1) = p?(1 — u)? better fits the data than
V(p) = p(1 = p).
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What You Need to Know

e Moment estimator of the dispersion parameter: ¢ = X2/(n— p).
e Quasi-likelihood
e Derivation

e Estimation of 3 using Fisher scoring
e Estimation of ¢ using moment matching
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