Lecture 12. Quasi-likelihood

Nan Ye

School of Mathematics and Physics University of Queensland

Looking Back: Course Overview

Generalized linear models (GLMs)

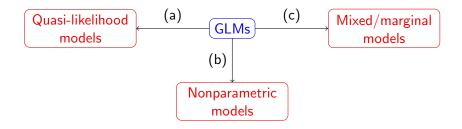
- Building blocks systematic and random components, exponential familes
- Prediction and parameter estimation
- Specific models for different types of data continuous response, binary response, count response...
- Modelling process and model diagnostics

Extensions of GLMs

- Quasi-likelihood models
- Nonparametric models
- Mixed models and marginal models

Time series

Extending GLMs



- (a) Relax assumption on the random component.
- (b) Relax assumption on the systematic component.
- (c) Relax assumption on the data (independence).

Recall

Gamma regression

• When Y is a non-negative continuous random variable, we can choose the systematic and random components as follows.

(systematic)
$$\mathbb{E}(Y \mid \mathbf{x}) = \exp(\beta^{\top}\mathbf{x})$$

(random) $Y \mid \mathbf{x}$ is Gamma distributed.

• We further assume the variance of the Gamma distribution is μ^2/ν (ν treated as known), thus

$$Y \mid \mathbf{x} \sim \Gamma(\mu = \exp(\beta^{\top} \mathbf{x}), \text{var} = \mu^2 / \nu),$$

where $\Gamma(\mu=a, \text{var}=b)$ denotes a Gamma distribution with mean a and variance b.

We have seen how to estimate β for Gamma regression. How do we estimate the dispersion parameter $\phi = 1/\nu$?

Poisson regression

- Poisson regression requires data variance to be the same as mean, but this is seldom the case in real data.
- Overdispersion: variance in data is larger than expected based on the model.
- Underdisperson: variance in data is smaller than expected based on the model.
- For count data, we used quasi Poisson regression to allow both overdisperson and underdispersion.
 - How is the quasi-Poisson model defined? How are the parameters estimated?

This Lecture

- Estimation of dispersion parameter
- Quasi-likelihood: derivation and parameter estimation

Estimation of Dispersion Parameter

Recall: Fisher scoring for Gamma regression

• Consider the Gamma regression model

$$Y \mid \mathbf{x} \sim \Gamma(\mu = \exp(\beta^{\top} \mathbf{x}), \text{var} = \mu^2 / \nu),$$

• Let $\mu_i = \exp(\mathbf{x}_i^{\top} \boldsymbol{\beta})$, then gradient and Fisher information are

$$\nabla \ell(\beta) = \sum_{i} \frac{\nu(y_i - \mu_i)}{\mu_i} \mathbf{x}_i, \qquad I(\beta) = \sum_{i} \nu \mathbf{x}_i^{\top} \mathbf{x}_i,$$

• Fisher scoring updates β to

$$\beta' = \beta + I(\beta)^{-1} \nabla \ell(\beta).$$

Update of β does not depend on the dispersion parameter $\phi = 1/\nu!$

Moment estimator for the dispersion parameter

- We first estimate β with Fisher scoring.
- Recall: if a GLM model with $var(Y) = \phi V(\mu)$ is correct, then

$$\frac{X^2}{\phi} = \sum_{i} \frac{(y_i - \hat{\mu}_i)^2}{\phi V(\hat{\mu}_i)} \sim \chi_{n-p}^2$$

where X^2 is the generalized Pearson statistic, n is the number of examples, and p is the number of parameters in β .

- That is, we have $\mathbb{E}(X^2/\phi) = n p$.
- The gives us the moment estimator

$$\hat{\phi} = \frac{X^2}{n-p} = \frac{1}{n-p} \sum_{i} \frac{(y_i - \hat{\mu}_i)^2}{V(\hat{\mu}_i)}$$

The formula can be used for any GLM with unknown ϕ !

Example

For Gamma regression, $var(Y) = \phi \mu^2$, so $V(\mu) = \mu^2$.

```
> fit.gam.inv = glm(time ~ lot * log(conc), data=clot,
  family=Gamma)
(Dispersion parameter for Gamma family taken to be 0.002129707)
> mu = predict(fit.gam.inv, type='response')
> sum((fit.gam.inv$y - mu)**2 / mu**2) / (length(mu) -
  length(coef(fit.gam.inv)))
[1] 0.002129692
```

Our estimate is consistent with the summary function.

Quasi-Likelihood

Recall: Fisher scoring for GLM

- Let $\mu_i = \mathbb{E}(Y_i \mid \mathbf{x}_i, \beta) = g(\mathbf{x}_i^{\top} \beta)$ and $V_i = \text{var}(Y_i \mid \mathbf{x}_i, \beta)$.
- The gradient, or score function, is

$$\nabla \ell(\beta) = \sum_{i} \frac{y_i - \mu_i}{g'(\mu_i)V_i} \mathbf{x}_i.$$

The Fisher information is

$$I(\beta) = \sum_{i} \frac{1}{g'(\mu_i)^2 V_i} \mathbf{x}_i \mathbf{x}_i^{\top}.$$

• Fisher scoring updates β to

$$\beta' = \beta + I^{-1}(\beta) \nabla \ell(\beta).$$

Fisher scoring for GLM can thus be written as

$$\beta' = \beta + \left(\sum_{i} \frac{1}{g'(\mu_i)^2 V_i} \mathbf{x}_i \mathbf{x}_i^{\top}\right)^{-1} \left(\sum_{i} \frac{y_i - \mu_i}{g'(\mu_i) V_i} \mathbf{x}_i\right).$$

- ullet We just need to know the link function g and the variances V_i 's.
- In particular, if we know $V_i = \phi V(\mu_i)$, then the update does not depend on ϕ .
- Thus we can determine β even if ϕ is unknown.

Quasi-model via Fisher scoring

A GLM has the following structure

(systematic)
$$\mu = \mathbb{E}(Y \mid \mathbf{x}) = h(\beta^{\top}\mathbf{x}),$$

(random) $Y \mid \mathbf{x}$ follows an exponential family distribution.

A quasi-model relaxes the assumption on the random component

(systematic)
$$\mu = \mathbb{E}(Y \mid \mathbf{x}) = h(\beta^{\top}\mathbf{x}),$$

(random) $\operatorname{var}(Y \mid \mathbf{x}) = \phi V(\mu),$

where ϕ is a dispersion parameter, $V(\mu)$ is a variance function, and β is determined using Fisher scoring!

Hi, I'm Quasimodo.

Quasi-model via quasi-likelihood

A quasi-model relaxes the assumption on the random component

(systematic)
$$\mu = \mathbb{E}(Y \mid \mathbf{x}) = h(\beta^{\top}\mathbf{x}),$$

(random) $\text{var}(Y \mid \mathbf{x}) = \phi V(\mu),$

where ϕ is a dispersion parameter, $V(\mu)$ is a variance function, and β is determined by maximizing quasi-likelihood!

• Quasi-likelihood is a surrogate for the log-likelihood of the mean parameter μ given an observation y, when we only know $\text{var}(Y \mid \mathbf{x}) = \phi V(\mu)$.

Construction of quasi-likelihood

• Recall: a score function $\ell(\mu)$ satisfies

$$\mathbb{E}(\ell) = 0,$$
 $\mathsf{var}(\ell) = -\,\mathbb{E}(\ell').$

• Define $S(\mu) = \frac{Y - \mu}{\phi V(\mu)}$, then $S(\mu)$ is similar to a score function:

$$\mathbb{E}(S)=0,$$
 $ext{var}(S)=-\mathbb{E}\,S'=rac{1}{\phi\,V(\mu)}.$

• $S(\mu)$ is thus called a quasi-score function.

- The usual log-likelihood is an integral of the score function.
- By analogy, the quasi-likelihood (quasi log-likelihood) is

$$Q(\mu; y) = \int_{y}^{\mu} \frac{y - t}{\phi V(t)} dt.$$

Quasi-likelihood for some variance functions

$V(\mu)$	$Q(\mu;y)$	distribution	constraint
$ \begin{array}{cccc} & & & \\ & & & \\ & \mu & & \\ & \mu^2 & & \\ & \mu^3 & & \\ & \mu^m & & \\ & \mu(1-\mu) & & \\ & \mu^2(1-\mu^2) & & \\ \end{array} $	$-(y - \mu)^{2}/2$ $y \ln \mu - \mu$ $-y/\mu - \ln \mu$ $-y/(2\mu^{2}) + 1/\mu$ $\mu^{-m} \left(\frac{\mu y}{1-m} - \frac{\mu^{2}}{2-m}\right)$ $y \ln \frac{\mu}{1-\mu} + \ln(1-\mu)$ $(2y - 1) \ln \frac{\mu}{1-\mu} \qquad y \qquad 1-y$	normal Poisson Gamma inverse Gaussian - binomial	$\begin{array}{l} -\\ \mu > 0, y \geq 0\\ \mu > 0, m \neq 0, 1, 2\\ \mu \in (0, 1), 0 \leq y \leq 1\\ \mu \in (0, 1), 0 \leq y \leq 1 \end{array}$
$\mu + \mu^2/k$	$(2y - 1) \ln \frac{\mu}{1-\mu} - \frac{y}{\mu} - \frac{1-y}{1-\mu}$ $y \ln \frac{\mu}{k+\mu} + k \ln \frac{k}{k+\mu}$	negative binomial	$\mu \geq (0,1), 0 \leq y \leq 1$ $\mu > 0, y \geq 0$

Parameter estimation for quasi-model

• In a quasi-model, μ is a function of β , and the quasi-likelihood is also a function of β

$$Q(\beta) = \sum_{i} Q(\mu_{i}(\beta); y_{i})$$

The Fisher scoring update for Q is given by

$$\beta' = \beta + (-\mathbb{E} \nabla^2 Q(\beta))^{-1} \nabla Q(\beta)$$

$$= \beta + \left(\sum_i \frac{1}{g'(\mu_i)^2 \phi V(\mu_i)} \mathbf{x}_i \mathbf{x}_i^{\top}\right)^{-1} \left(\sum_i \frac{y_i - \mu_i}{g'(\mu_i) \phi V(\mu_i)} \mathbf{x}_i\right).$$

The update is independent of ϕ .

• ϕ is estimated as $\hat{\phi} = \frac{X^2}{n-p}$ after β is estimated.

Recall: quasi-Poisson regression

- Quasi-Poisson regression model introduces an additional dispersion paramemeter ϕ .
- It replaces the original model variance V_i on \mathbf{x}_i by ϕV_i .
- $\phi > 1$ is used to accommodate overdispersion relative to the original model.
- $\phi < 1$ is used to accommodate underdispersion relative to the original model.
- ϕ is usually estimated separately after estimating β .

Estimating ϕ in quasi-Poisson regression

```
> fit.qpo <- glm(Days ~ Sex + Age + Eth + Lrn, data=quine,
  family=quasipoisson)
(Dispersion parameter for quasipoisson family taken to be
  13.16691)
> mu = predict(fit.qpo, type='response')
> sum((fit.qpo$y - mu)**2 / mu) / (length(mu) -
  length(coef(fit.qpo)))
[1] 13.16684
```

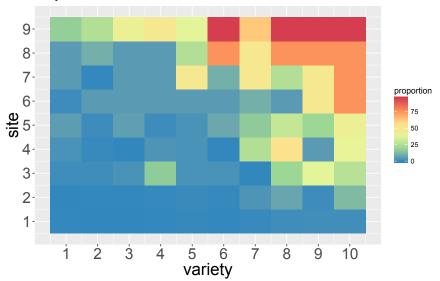
Example

Data

Variety											
Site	1	2	3	4	5	6	7	8	9	10	Mean
1	0.05	0.00	0.00	0.10	0.25	0.05	0.50	1.30	1.50	1.50	0.52
2	0.00	0.05	0.05	0.30	0.75	0.30	3.00	7.50	1.00	12.70	2.56
3	1.25	1.25	2.50	16.60	2.50	2.50	0.00	20.00	37.50	26.25	11.03
4	2.50	0.50	0.01	3.00	2.50	0.01	25.00	55.00	5.00	40.00	13.35
5	5.50	1.00	6.00	1.10	2.50	8.00	16.50	29.50	20.00	43.50	13.36
6	1.00	5.00	5.00	5.00	5.00	5.00	10.00	5.00	50.00	75.00	16.60
7	5.00	0.10	5.00	5.00	50.00	10.00	50.00	25.00	50.00	75.00	27.51
8	5.00	10.00	5.00	5.00	25.00	75.00	50.00	75.00	75.00	75.00	40.00
9	17.50	25.00	42.50	50.00	37.50	95.00	62.50	95.00	95.00	95.00	61.50
Mean	4.20	4.77	7.34	9.57	14.00	21.76	24.17	34.81	37.22	49.33	20.72

- Incidence of leaf blotch on 10 varieties of barley grown at 9 sites.
- The response is the percentage leaf area affected.

Heatmap for the data



```
> fit.qbin = glm(proportions ~ as.factor(site) +
as.factor(variety), family = quasibinomial)
```

- A binomial model satisfies $var(Y) = \mu(1 \mu)$.
- A quasibinomial model assumes that $var(Y) = \phi \mu (1 \mu)$, where ϕ is the dispersion parameter.
- The probability of having leaf blotch for variety j at site i has the form

$$p_{ij} = \frac{\exp(b + \alpha_i + \beta_j)}{1 + \exp(b + \alpha_i + \beta_j)}$$

> summary(fit.qbin)

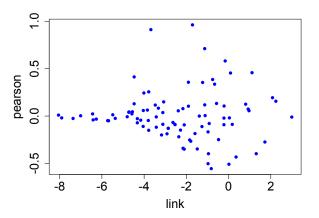
Coefficients:

COEILICIENCS.					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-8.0546	1.4219	-5.665	2.84e-07	***
as.factor(site)2	1.6391	1.4433	1.136	0.259870	
as.factor(site)3	3.3265	1.3492	2.466	0.016066	*
as.factor(site)4	3.5822	1.3444	2.664	0.009510	**
as.factor(site)5	3.5831	1.3444	2.665	0.009493	**
as.factor(site)6	3.8933	1.3402	2.905	0.004875	**
as.factor(site)7	4.7300	1.3348	3.544	0.000697	***
as.factor(site)8	5.5227	1.3346	4.138	9.38e-05	***
as.factor(site)9	6.7946	1.3407	5.068	3.00e-06	***

```
0.7237
as.factor(variety)2
                     0.1501
                                        0.207 0.836289
as.factor(variety)3
                     0.6895
                                0.6724
                                        1.025 0.308587
as.factor(variety)4
                     1.0482
                                0.6494
                                        1.614 0.110910
as.factor(variety)5
                     1.6147
                                0.6257
                                        2.581 0.011895 *
as.factor(variety)6
                                0.6090
                                        3.893 0.000219 ***
                     2.3712
as.factor(variety)7
                     2.5705
                                0.6065
                                        4.238 6.58e-05 ***
as.factor(variety)8
                     3.3420
                                0.6015 5.556 4.39e-07 ***
as.factor(variety)9
                     3.5000
                                0.6013
                                        5.820 1.51e-07 ***
as.factor(variety)10
                     4.2530
                                0.6042
                                        7.039 9.38e-10 ***
Signif. codes:
               0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for quasibinomial family taken to be 0.08877)
```

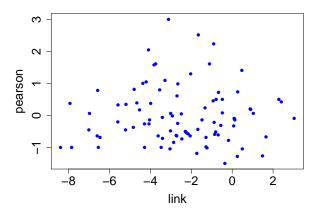
- We can see that both α_i and β_i are increasing as i, j increase.
- This is consistent with the trend in data.

Pearson residual plot



- The residuals are more or less symmetrically distributed around 0.
- Thus the mean function appears to be a good fit.
- However, the residuals are very close to 0 at both ends, and this suggests that the variance function is not good.

Pearson residual plot with $V(\mu) = \mu^2 (1 - \mu)^2$



- The residual plot is better than that with $V(\mu) = \mu(1-\mu)$.
- The variance function $V(\mu) = \mu^2 (1 \mu)^2$ better fits the data than $V(\mu) = \mu (1 \mu)$.

What You Need to Know

- Moment estimator of the dispersion parameter: $\hat{\phi} = X^2/(n-p)$.
- Quasi-likelihood
 - Derivation
 - Estimation of β using Fisher scoring
 - Estimation of ϕ using moment matching