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Nonparametric Models

Parametric models

• Fixed structure and number of parameters.

• Represent a fixed class of functions.

Nonparametric models

• Flexible structure where the number of parameters usually grow as
more data becomes available.

• The class of functions represented depends on the data.

• Not models without parameters, but nonparametric in the sense
that they do not have fixed structures and numbers of parameters
as in parametric models.
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This Lecture

• k-NN

• LOESS

• Splines
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k-NN Regression

Algorithm

• Training set is (x1, y1), . . . , (xn, yn).

• To compute E(Y | x) for any x
• Nk(x)← nearest k training examples.
• Predict the average response for the examples in N𝛼(x).
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Effect of k

• Training error is zero when k = 1, and approximately increases as k
increases.

• However, the fitted 1-NN model is often not smooth and does not
work well on test data.

• Cross-validation can be used to choose a suitable k.
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Remarks

• k-NN is data inefficient
• For high-dimensional problems, the amount of data required for

good performance is often huge.

• k-NN is computationally inefficient
• Naively, predicting on m test examples requires O(nmk) time.
• This can be improved, but still k-NN is very slow.
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LOESS (LOcal regrESSion)

Idea

• Training set is (x1, y1), . . . , (xn, yn).

• To compute E(Y | x) for any x
• N𝛼(x)← nearest n𝛼 training examples.
• Perform a weighted linear regression using N𝛼(x).
• Evaluate the fitted linear model at x.

• The locality parameter 𝛼 controls the neighborhood size.

7 / 21



Details

• Local weighted linear regression is as follows

𝜃 = argmin
𝛽

∑︁
(x′,y ′)∈N𝛼(x)

w(‖x− x′‖)(y ′ − 𝛽⊤x′)2,

• The weight function w is defined by

w(d) =

(︂
1− d3

M3

)︂3

,

where M = max(1, 𝛼)1/p max(x′,y ′)∈N𝛼(x)‖x− x′‖ is the scaled
maximum distance.
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Effect of 𝛼

• If 𝛼 is very small, the neighborhood may have too few points, for
the weighted least squares problem to have a unique solution.

• In general, a smaller 𝛼 makes the fitted surface more wiggly.

• As 𝛼→∞, we have w(d)→ 1, and 𝜃 becomes the OLS
parameter. Thus LOESS converges to OLS as 𝛼→∞.
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LOESS with higher degree terms

• We can add higher degree terms like quadratic terms xixj before
we perform regression.

• This can be helpful if the linear predictor does not work well.
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Data

> head(cars)

speed dist

1 4 2

2 4 10

3 7 4

4 7 22

5 8 16

6 9 10

> dim(cars)

[1] 50 2
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Scatterplot
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LOESS in R

a = 2

deg = 2

fit.loess <- loess(dist ~ speed, cars, span=a, degree=deg)
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Comparison of OLS and LOESS
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• The linearity assumption of OLS is rigid and does not adapt to the
data’s complexity.

• LOESS is capable of adapting to the data’s complexity through
local regression, and better fits the data than OLS.
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Effect of 𝛼

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
12

0

speed

di
st

loess (a=.5, d=2)
loess (a=2, d=2)

Smaller 𝛼 leads to a more wiggly fit.
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Effect of degree
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Higher degree leads to a more wiggly fit.
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Splines

• A flat spline is a device used for drawing smooth curves.

• A spline is a smooth piecewise polynomial function.
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Spline, order, and knots

• A function f : R→ R is a spline of order k with knots at
t1 < . . . < tm if

• f (x) is a polynomial of degree k on each of the interval
(−∞, t1], [t1, t2], . . . , [tm,∞), and

• its i-th derivative f (i)(x) is continuous at each knot for each
i = 0, . . . , k − 1.

• The cubic splines (k = 3) are most commonly used.

• Natural splines are linear beyond t1 and tm.
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Truncated power basis

• An order-k spline with knots t1, . . . , tm is a linear combination of
the following k +m + 1 basis functions

h1(x) = 1, h2(x) = x , . . . , hk+1(x) = xk ,

hk+1+j(x) = (x − tj)
k
+, j = 1, . . . ,m,

where (x)+ = max(0, x) is the positive part function.

• These basis functions are called the truncated power basis.
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Spline regression as linear regression

• Training data: (x1, y1), . . . , (xn, yn) ∈ R× R.

• Given knots t1, . . . , tm, an order k spline is fitted by minimizing

𝛽 =
n∑︁

i=1

(𝛽⊤zi − yi )
2,

where zi = (h1(xi ), . . . , hk+1+m(xi )).

• The fitted spline is

f (x) =
∑︁
i

𝛽ihi (x).

• The knots can be chosen in a data-dependent way (e.g. equally
spaced between min and max x).
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What You Need to Know

• Nonparametric models can adapt to data’s complexity.

• k-NN: averaging over a neighborhood.

• LOESS: weighted linear regression over a neighborhood.

• Splines: fit smooth piecewise polynomials.
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