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Recall: Nonparametric Models

Parametric models
® Fixed structure and number of parameters.
® Represent a fixed class of functions.
Nonparametric models

® Flexible structure where the number of parameters usually grow as
more data becomes available.

® The class of functions represented depends on the data.

® Not models without parameters, but nonparametric in the sense
that they do not have fixed structures and numbers of parameters
as in parametric models.
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This Lecture

® Smoothing splines

® Generalized additive models

3/22



Smoothing Splines

If we fit a degree 8 polynomial on these 9 points, will the polynomial be
a good fit?
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Runge phenomenon: polynomial fits can be very unstable.
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Trade-off between smoothness and quality of fit

e We want to find a curve f(x) that fits data well, and is sufficiently
smooth at the same time.

® This can be formulated as finding f to minimize

n

R(F) = (i — F(x:))* + AJ(F),

i=1

where J(f) is a measure of the roughness of f, and A >0 is a
parameter controlling the tradeoff between the smoothness and the
quality of fit.

e J(f) is also called a regularizer.
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Measuring roughness
® For a quadratic function f(x) = cx?, large f”(x) indicates that the
curve is very wiggly.
® In general, for any function f, if f”(x) is usually large, then f looks
very wiggly.
® We can use

b
J(f) = /a f(x)?dx

as a measure for overall roughness of f over [a, b].
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Smoothing splines
® Assume that a < min; x;, and b > max; x;.

® Consider the problem of finding a function f minimizing

n

b
R(f) = Z(YI — f(x))? + )\/ ' (x)%dx.

i=1 a

® When A =0, f can be any function passing through the data.
® When A = oo, f is the OLS fit.

® When 0 < A < oo, f is a natural cubic spline with knots at the
unique x; values.
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Reuvisiting the example
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A smoothing spline can fit the data well and is smooth!
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A basis for natural cubic spline
® Recall: natural splines are linear at two ends.
® Assume that the knots are t,..., tpy.

® A natural cubic spline is a linear combination of the following m
basis functions

m(x)=1, m(x)=x,
nyi(x) = di(x) — dm-1(x), i=1,...,m—2,

where d;(x) = (X_t')im_+tm)3+

10 / 22



Fitting a smoothing spline
e Training data: (x1,¥1),.-.,(Xn,¥n) € R xR.
® A smoothing spline is fitted by minimizing
n

B=Y (8Tzi—yi)> + A\3TQ8,

i=1

where z; = (n1(x;), ..., na(x;)), ni's use x;'s as the knots, and
Qy = [ nf (x)n](x)dx.

1

® The fitted spline is

f(x) = Z Bini(x).
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Matrix form
® Let Z be the n x n matrix with z; as the j-th row.

® Then ﬁA can be written as
B=(ZTZ2+X0)"'ZTy.
® We thus have
§ =28 =Sy,
where S is the smoother matrix

S\=2Z(Z'z+))'Z".
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Effective degree of freedom

® The effective degree of freedom of a smoothing spline is

dfy = trace(S)),

where the trace of a matrix is the sum of its diagonal elements.

® The effective degree of freedom can be considered as a

generalization of the concept of the number of free parameters.
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Selection of smoothing parameters

® The effective degree of freedom df provides an intuitive way to
manually specify the smoothing parameter A.

® There are various procedures used for automatically determining
the A values, such as cross-validation, generalized cross validation.
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Smoothing splines in R

> fit.spline.df <- smooth.spline(cars$speed, cars$dist, df=9)

Smoothing Parameter spar= 0.3858413 lambda= 0.0001576001 (11
iterations)

Equivalent Degrees of Freedom (Df): 8.998755

Penalized Criterion (RSS): 2054.319

GCV: 262.3012

> fit.spline.gcv <- smooth.spline(cars$speed, cars$dist)

Smoothing Parameter spar= 0.7801305 lambda= 0.1112206 (11
iterations)

Equivalent Degrees of Freedom (Df): 2.635278

Penalized Criterion (RSS): 4187.776

GCV: 244.1044

® By default, the smoothing parameter X is determined using
generalized cross validation.
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Generalized Additive Models

® Smoothing spline is a nonparametric analogue of OLS.
® \We can extend the approach to GLM.
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Idea
® Replace the linear predictor by 5o + h1(x1) + ...+ hg(xq)-

® Maximize roughness penalized log-likelihood instead of
log-likelihood.
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Generalized additive model (GAM)
® Recall: A GLM has the following structure

(systematic) E(Y | x) = h(8"x),
(random) Y | x follows an exponential family distribution.

e A generalized additive model has the following structure
(systematic) E(Y |x)=h(Bo+ » _ hi(x))
(random) Y | x follows an exponential family distribution.

This defines a conditional probability model

p(y | X7B0>h17"-7hd)
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Roughness penalty approach for GAM

® \We want to choose g, hi,..., hy to maximize
S (i | x5, 6o, b, ZA [ #2as.
i

® Again, if each \; > 0, then each h; must be a natural cubic spline
with knots at the unique values of Xx;.

® This reduces the problem to a finite-dimensional parametric
regression problem.
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Remarks

® Higher order derivatives may be used in the regularizer
(smoothness penalty).

® We can also use regression splines instead of smoothing splines to
represent h;'s.

® h;'s may use a mix of different representations.

e.g. hi(x1) = x1, ha(x2) a regression spline, h3(x3) a smoothing
spline...
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What You Need to Know

® Smoothing splines

® The roughness penalty approach

® Natural cubic splines as smoothing splines

® Smoothing parameter and effective degree of freedom
® Generalized additive model

® GAM as a generalization of GLM
® Roughness penalty approach for GAM

22 /22



