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Recall: Nonparametric Models

Parametric models

∙ Fixed structure and number of parameters.

∙ Represent a fixed class of functions.

Nonparametric models

∙ Flexible structure where the number of parameters usually grow as
more data becomes available.

∙ The class of functions represented depends on the data.

∙ Not models without parameters, but nonparametric in the sense
that they do not have fixed structures and numbers of parameters
as in parametric models.
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This Lecture

∙ Smoothing splines

∙ Generalized additive models
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Smoothing Splines
If we fit a degree 8 polynomial on these 9 points, will the polynomial be
a good fit?
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No...
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Runge phenomenon: polynomial fits can be very unstable.
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Trade-off between smoothness and quality of fit

∙ We want to find a curve f (x) that fits data well, and is sufficiently
smooth at the same time.

∙ This can be formulated as finding f to minimize

R(f ) =
n∑︁

i=1

(yi − f (xi ))
2 + 𝜆J(f ),

where J(f ) is a measure of the roughness of f , and 𝜆 > 0 is a
parameter controlling the tradeoff between the smoothness and the
quality of fit.

∙ J(f ) is also called a regularizer.
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Measuring roughness

∙ For a quadratic function f (x) = cx2, large f ′′(x) indicates that the
curve is very wiggly.

∙ In general, for any function f , if f ′′(x) is usually large, then f looks
very wiggly.

∙ We can use

J(f ) =

∫︁ b

a
f ′′(x)2dx

as a measure for overall roughness of f over [a, b].
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Smoothing splines

∙ Assume that a < mini xi , and b > maxi xi .

∙ Consider the problem of finding a function f minimizing

R(f ) =
n∑︁

i=1

(yi − f (xi ))
2 + 𝜆

∫︁ b

a
f ′′(x)2dx .

∙ When 𝜆 = 0, f can be any function passing through the data.

∙ When 𝜆 = ∞, f is the OLS fit.

∙ When 0 < 𝜆 < ∞, f is a natural cubic spline with knots at the
unique xi values.
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Revisiting the example
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A smoothing spline can fit the data well and is smooth!
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A basis for natural cubic spline

∙ Recall: natural splines are linear at two ends.

∙ Assume that the knots are t1, . . . , tm.

∙ A natural cubic spline is a linear combination of the following m
basis functions

n1(x) = 1, n2(x) = x ,

n2+i (x) = di (x)− dm−1(x), i = 1, . . . ,m − 2,

where di (x) =
(x−ti )

3
+−(x−tm)3+
tm−ti

.
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Fitting a smoothing spline

∙ Training data: (x1, y1), . . . , (xn, yn) ∈ R× R.

∙ A smoothing spline is fitted by minimizing

𝛽 =
n∑︁

i=1

(𝛽⊤zi − yi )
2 + 𝜆𝛽⊤Ω𝛽,

where zi = (n1(xi ), . . . , nn(xi )), ni ’s use xi ’s as the knots, and
Ωij =

∫︀
n′′i (x)n

′′
j (x)dx .

∙ The fitted spline is

f (x) =
∑︁
i

𝛽ini (x).
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Matrix form

∙ Let Z be the n × n matrix with zi as the i-th row.

∙ Then 𝛽 can be written as

𝛽 = (Z⊤Z+ 𝜆Ω)−1Z⊤y.

∙ We thus have

ŷ = Z𝛽 = S𝜆y,

where S𝜆 is the smoother matrix

S𝜆 = Z(Z⊤Z+ 𝜆Ω)−1Z⊤.
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Effective degree of freedom

∙ The effective degree of freedom of a smoothing spline is

df𝜆 = trace(S𝜆),

where the trace of a matrix is the sum of its diagonal elements.

∙ The effective degree of freedom can be considered as a
generalization of the concept of the number of free parameters.
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Selection of smoothing parameters

∙ The effective degree of freedom df𝜆 provides an intuitive way to
manually specify the smoothing parameter 𝜆.

∙ There are various procedures used for automatically determining
the 𝜆 values, such as cross-validation, generalized cross validation.
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Smoothing splines in R

> fit.spline.df <- smooth.spline(cars$speed, cars$dist, df=9)

Smoothing Parameter spar= 0.3858413 lambda= 0.0001576001 (11

iterations)

Equivalent Degrees of Freedom (Df): 8.998755

Penalized Criterion (RSS): 2054.319

GCV: 262.3012

> fit.spline.gcv <- smooth.spline(cars$speed, cars$dist)
Smoothing Parameter spar= 0.7801305 lambda= 0.1112206 (11

iterations)

Equivalent Degrees of Freedom (Df): 2.635278

Penalized Criterion (RSS): 4187.776

GCV: 244.1044

∙ By default, the smoothing parameter 𝜆 is determined using
generalized cross validation.
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Generalized Additive Models

∙ Smoothing spline is a nonparametric analogue of OLS.

∙ We can extend the approach to GLM.
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Idea

∙ Replace the linear predictor by 𝛽0 + h1(x1) + . . .+ hd(xd).

∙ Maximize roughness penalized log-likelihood instead of
log-likelihood.
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Generalized additive model (GAM)

∙ Recall: A GLM has the following structure

(systematic) E(Y | x) = h(𝛽⊤x),

(random) Y | x follows an exponential family distribution.

∙ A generalized additive model has the following structure

(systematic) E(Y | x) = h(𝛽0 +
∑︁
i

hi (xi ))

(random) Y | x follows an exponential family distribution.

This defines a conditional probability model

p(y | x, 𝛽0, h1, . . . , hd)
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Roughness penalty approach for GAM

∙ We want to choose 𝛽0, h1, . . . , hd to maximize∑︁
i

ln p(yi | xi , 𝛽0, h1, . . . , hd)−
∑︁
j

𝜆j

∫︁
h′′j (xj)

2dxj .

∙ Again, if each 𝜆j > 0, then each hj must be a natural cubic spline
with knots at the unique values of xj .

∙ This reduces the problem to a finite-dimensional parametric
regression problem.
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Remarks

∙ Higher order derivatives may be used in the regularizer
(smoothness penalty).

∙ We can also use regression splines instead of smoothing splines to
represent hi ’s.

∙ hi ’s may use a mix of different representations.

e.g. h1(x1) = x1, h2(x2) a regression spline, h3(x3) a smoothing
spline...
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What You Need to Know

∙ Smoothing splines
∙ The roughness penalty approach
∙ Natural cubic splines as smoothing splines
∙ Smoothing parameter and effective degree of freedom

∙ Generalized additive model
∙ GAM as a generalization of GLM
∙ Roughness penalty approach for GAM
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